Math, asked by XtarLie, 1 month ago


 \sf{Solve \:  log_{3}( \sqrt{x}  +  | \sqrt{x} - 1 | ) =  log_{9}( 4\sqrt{x} - 3 + 4 | \sqrt{x} - 1 |  )  }

Answers

Answered by Cayler
15

Answer:

 \sf{ log_{3}( \sqrt{x} + | \sqrt{x} - 1 | ) = log_{9}( 4\sqrt{x} - 3 + 4 | \sqrt{x} - 1 | ) }.. (i)

From Eq.(i) is defined , ifx≥0

 \sf{then \:  log_{3}( \sqrt{x}  +  | \sqrt{x} - 1 | ) =  log_ {{3}^{2}} (4 \sqrt{x} - 3 + 4 | \sqrt{x}  - 1|  )  }

 \implies \sf{} \: 2( \sqrt{x}  +  | \sqrt{x}  - 1|) = 4 \sqrt{x}  - 3 + 4 | \sqrt{x} - 1 |

 \implies  \sf{}\: 3 - 2 \sqrt{x}  = 2 | \sqrt{x} - 1 |

On squaring both sides, then

 \sf \:  \:  \: 9 + 4x - 12 \sqrt{x}  = 4x + 4 - 4 \sqrt{x}

 \:  \:  \:  \:  \:  : \longmapsto \: 8 \sqrt{x} = 5

 \therefore  \: {\underline{\boxed{  \sf{\pink{\:  \:  \: x =  \frac{25}{64}}}}}}

Answered by utkarshsahu1804
3

Answer:

hope this little help you

Step-by-step explanation:

hi how are you

good morning

aapka intro pls?

Attachments:
Similar questions