Math, asked by Kabir565, 7 months ago

\sf \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1} }  = 2cosec \theta\\\\prove it ​

Answers

Answered by kulkarninishant346
1

Step-by-step explanation:

riginally Answered: How to Prove: \sqrt{\dfrac{sec \theta-1}{sec \theta+1}}+ \sqrt{\dfrac{sec \theta+1}{sec \theta-1}} = 2 Cosec \theta ?

secθ−1secθ+1−−−−−−−√+secθ+1secθ−1−−−−−−−√

=1cosθ−11cosθ+1−−−−−−−⎷+1cosθ+11cosθ−1−−−−−−−⎷

=1−cosθ1+cosθ−−−−−−−√+1+cosθ1−cosθ−−−−−−−√

=2sin2θ22cos2θ2−−−−−−−⎷+2cos2θ22sin2θ2−−−−−−−⎷

=tanθ2+cotθ2

=tanθ2+1tanθ2

=tan2θ2+1tanθ2

=sec2θ2tanθ2

=1cos2θ2sinθ2cosθ2

=1cosθ2sinθ2

=2sinθ

=2Cosecθ

Answered by Anonymous
12

\;\;\underline{\textbf{\textsf{ Given:-}}} \\

\sf \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1} }  = 2cosec \theta\\\\

\;\;\underline{\textbf{\textsf{ To Prove:-}}}\\

• L.H.S = R.H.S

\;\;\underline{\textbf{\textsf{ Proof  :-}}} \\

 \sf LHS = \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} }  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1} } \\ \\\\

 \sf  = \sqrt{ \dfrac{sec \theta - 1}{sec \theta + 1} \times   \dfrac{sec \theta - 1}{sec \theta  -  1}}  +  \sqrt{ \dfrac{sec \theta  +  1}{sec \theta  - 1}  \times \dfrac{sec \theta  +  1}{sec \theta + 1} }  \\\\\\

 \sf  = \sqrt{ \dfrac{(sec \theta - 1)(sec \theta   -  1)}{(sec \theta + 1)(sec \theta  -  1)} }  +  \sqrt{ \dfrac{(sec \theta  +  1)(sec \theta + 1)}{(sec \theta  - 1)(sec \theta + 1)}  }  \\\\\\

 \sf  = \sqrt{ \dfrac{(sec \theta - 1) ^{2} }{sec ^{2}  \theta  -  1} }  +  \sqrt{ \dfrac{(sec\theta  +  1)^{2} }{sec^{2} \theta  - 1}  } \\\\\\

 \sf  = \dfrac{ \sqrt{(sec \theta - 1) ^{2} }}{ \sqrt{tan ^{2}  \theta  }}  +  \dfrac{ \sqrt{( sec\theta  +  1)^{2}} }{ \sqrt{tan^{2} \theta} }   \\\\\\

 \sf  = \dfrac{ sec \theta - 1}{ tan  \theta  }  +  \dfrac{ sec\theta  +  1 }{ tan\theta} \\ \\\\

 \sf  = \dfrac{ sec \theta - 1 + sec\theta  +  1 }{ tan  \theta  } \\ \\ \\

 \sf  = \dfrac{ 2 sec\theta   }{ tan  \theta  } \\\\ \\

 \sf  = \dfrac{ 2   \times \dfrac{1}{cos \theta}   }{  \dfrac{sin \theta}{cos \theta} } \\\\ \\

 \sf  = \dfrac{ 2 }{  sin \theta} \\\\\\

 \sf  =2cosec \theta = RHS\\\\

 \leadsto  \  {\boxed{\tt{LHS = RHS}}}

 \therefore{ \underline{\bf{(Proved)}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions