Math, asked by XxLUCYxX, 3 days ago

 \sf \: The\:roots\:of\:the\: quadratic\: equation \: 4 {x}^{2} \: - 7x + 2 = 0 \: are \: 1.390 \: and \: 0.359 . \\ \: \sf \: The \: roots \: correct \: to \: 2 \: significant \: figures \: are \:
 \sf \: @\:The\:Brain\: don't\:delete\:my\:questions \: it \: isn't \: violating \: brainly \: guidlines

Answers

Answered by saichavan
7

Answer:

 \displaystyle \: x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\times 2}}{2\times 4}

 \displaystyle \: x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\times 2}}{2\times 4}

 \displaystyle \: x=\frac{-\left(-7\right)±\sqrt{49-32}}{2\times 4}

 \displaystyle \: x=\frac{-\left(-7\right)±\sqrt{17}}{2\times 4}

 \displaystyle \: x=\frac{7±\sqrt{17}}{2\times 4}

 \displaystyle \: x=\frac{7±\sqrt{17}}{8}

 \displaystyle \: x =  \frac{7 -  \sqrt{17} }{8} \: or \: x =  \frac{ \sqrt{17}  + 7}{8}

x=\frac{\sqrt{17}+7}{8} = 1. 390\\  x=\frac{7-\sqrt{17}}{8}  = 0.359

Hence, The approximate value is correct.

Similar questions