Math, asked by OoAryanKingoO79, 10 hours ago

\sf\tiny{\purple{If  \: sin \:  θ  \: - \:  cos \:  θ \:  = \:  0, \:  then \:  the  \: value  \: of \:  (sin^4θ - cos^4θ) = ?}}

Answers

Answered by OoAryanKingoO78
8

Answer:

Given :-

Sin θ- cosθ= 0, then value of (sin⁴θ-cos⁴θ) ?

Solutions :-

sinθ - cosθ = 0

sinθ = cosθ

 \frac{sinθ}{cosθ}  = 1

tanθ = 1

θ =  \frac{\pi}{4}

Now,

sin {}^{4} θ + cos {}^{4} θ = (sin \frac{\pi}{4} )  {}^{4}  +(cos \frac{\pi}{4} ) {}^{4}  =

( \frac{1}{ \sqrt{2} } ) {}^{4}  + ( \frac{1}{ \sqrt{2} } ) {}^{4}  =  \frac{1}{4}  +  \frac{1}{4}  =  \frac{1}{2}

So,

sin {}^{4} θ + cos  {}^{4} θ =  \frac{1}{2}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by itzmecutejennei
0

Answer:

From the above equation, we get

cosθ=sinθ

Hence

θ=450

Therefore

sin 4 θ+cos 4θ

=sin 4 45 0 +cos 4450

Step-by-step explanation:

hence the correct answer is 1/2

Similar questions