Math, asked by Anonymous, 5 months ago



 \sf \to \:  \sf \: find \:  \dfrac{dy}{dx}  \:  \:  \: if \:  \: y = (tanx) ^{sinx}  +  (sinx)^{tanx}  \:  \: w.r.t \:  \: x

Answers

Answered by Anonymous
87

Answer:-

let \rm\\\\\\ \rm (tanx) ^{sinx} \sf{ \: be \: } y_1

and \rm\\\\\\\rm (sinx)^{tanx} \sf{\: be \:} y_2

\rm

\rm \bullet \bf (tanx) ^{sinx} = y_1

taking log on both sides

\rm \log \ y_1 = \log \: ( tanx)^{sinx}

\rm \log \ y_1 = sinx \cdot \ln \: tanx

\rm \dfrac{1}{y_1} y_1 ' = \sin x \dfrac{1}{\tan x} sec^2 x+ \log \tan x \cdot \cos x

\rm

\rm \bullet \bf(sinx)^{tanx} = y_2

taking log on both sides

\rm \log \ y_2 = \log \: ( sinx)^{tanx}

\rm \log \ y_2 = tanx \cdot log \ sinx

\rm \dfrac{1}{y_2} y_2 ' = tanx \cdot \dfrac{1}{sinx} \cdot cosx + \log sinx \ . \ sec^2 x

\rm

now to find dy/dx, we need to add 1/y₁ y₁' and 1/y₂ y₂'

\rm = \sin x \dfrac{1}{\tan x} sec^2 x+ \log \tan x \cdot \cos x

\rm + tanx \cdot \dfrac{1}{sinx} \cdot cosx + \log sinx \ . \ sec^2 x

\rm = secx + sec^2 x \ log(sinx) + cosx \: log(tanx) +1

Answered by amansharma264
58

EXPLANATION.

 \sf \implies \: y \:  = ( \tan(x) ) {}^{ \sin(x) }  \:  +  \:  (\sin(x)) {}^{ \tan(x) }

\sf  \implies \:let \: y \:  = u \:  + v \\  \\ \sf  \implies \: \frac{dy}{dx}  =  \frac{du}{dx}  \:  +  \:  \frac{dv}{dx}  \\  \\ \sf  \implies \: \: u \:  =  (\tan(x)) {}^{ \sin(x) } \\  \\  \sf  \implies \: \: v \:  =(  \sin(x)) {}^{ \tan(x) }

\sf  \implies \:u \:  =  (\tan(x)) {}^{ \sin(x) } \\  \\  \sf  \implies \: \: taking \: log \: on \: both \: sides \: we \: get \\  \\  \sf  \implies \: ln(u)  =  ln( \tan(x) ) {}^{ \sin(x) }  \\  \\  \sf  \implies \: \frac{1}{u}  \frac{du}{dx}  =  \sin(x)  ln( \tan(x) )

\sf  \implies \: \dfrac{1}{u} \dfrac{du}{dx}  =  \sin(x) . \dfrac{ \sec {}^{2} (x) }{ \tan(x) }  \:  +  \:  ln( \tan(x) ) \cos(x) \\  \\ \sf  \implies \: \frac{du}{dx}   = u   \Bigg[ \sec(x)  \: + \:  ln( \tan(x) )  \cos(x)  \Bigg]  \\  \\   \sf \implies \:  \frac{du}{dx}   \:  =  (\tan(x)  ) {}^{ \sin(x) }\Bigg[ \sec(x)   \:  +   ln( \tan(x) )  \cos(x)  \Bigg]

 \sf \implies \: v \:  =(  \sin(x) ) {}^{ \tan(x) } \\  \\   \sf \implies \: taking \: log \: on \: both \: sides \: we \: get \\  \\  \sf \implies \:  \frac{1}{v}. \frac{dv}{dx}   =  ln( \sin(x) ) {}^{ \tan(x) } \\  \\  \sf \implies \:  \frac{1}{v} . \frac{dv}{dx}   =  \tan(x)  ln( \sin(x) )

 \sf \implies \:  \dfrac{1}{v}. \dfrac{dv}{dx}  =  \tan(x). \dfrac{ \cos(x) }{ \sin(x) }  \:  +  \:  ln( \sin(x) )  \sec {}^{2} (x)  \\  \\   \sf \implies \:  \frac{dv}{dx} = v \Bigg[1 \:  +  \:  ln( \sin(x) )  \sec {}^{2} (x) \Bigg] \\  \\  \sf \implies \:  \frac{dv}{dx} \:  =  \sin(x) {}^{ \tan(x) }\Bigg[1 \:  +  \:  ln( \sin(x) ) \sec {}^{2} (x) \Bigg]

 \sf \implies \: y \:  = u \:  + v \:  \\  \\  \sf \implies \: add \: the \: value \: of \: u \: and \: v \\  \\  \sf \implies \:  \tan(x) {}^{ \sin(x) }\Bigg[ \sec(x)  \:  +  \:  ln( \tan(x) )  \cos(x)  \Bigg] \:  +  \:  \sin(x)  {}^{ \tan(x) } \Bigg[ 1 \:  +  \:  ln( \sin(x) ) \sec {}^{2} (x) \Bigg]

Similar questions