Math, asked by kamalhajare543, 1 day ago


\sf\tt\large{\green {\underline {\underline{⚘\; Question:}}}}

Best Brainly user

\sf \: \lim _{x \longrightarrow - \infty }( \sin( \frac{1}{ \theta} ) )

Expain in Step by step.

No spam ​

Answers

Answered by mathdude500
9

Appropriate Question :-

Evaluate the following limit :-

\rm :\longmapsto\:\displaystyle\lim_{x \to  \: -  \:  \infty} \: sin \frac{1}{x}

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to  \: -  \:  \infty} \: sin \frac{1}{x}

To evaluate this limit, we use method of Substitution

So, Substitute

\red{\rm :\longmapsto\:x \:  = \:  -   \: \dfrac{1}{y}}

\red{\rm :\longmapsto\:As \: x \:  \to \:  -  \infty ,  \: so \: \: y \:  \to \: 0 \: }

So, above expression

\rm :\longmapsto\:\displaystyle\lim_{x \to  \: -  \:  \infty} \: sin \frac{1}{x}

can be rewritten as

 \rm \:  =  \: \displaystyle\lim_{y \to 0} \: sin( - y)

 \rm \:  =  \: -  \:  \displaystyle\lim_{y \to 0} \: sin( y)

 \rm  \: =  \:  -  \: sin0

 \rm  \: =  \: 0

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to  \: -  \:  \infty} \: sin \frac{1}{x}  = 0 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \:  \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions