Math, asked by VISHALKUMARV22, 7 months ago


show \: that \: 0.3333...   \infty  \: can \: be \: expressed \:  \\ in \: the \: form \:  \frac{p}{q} \:  \\  where \: p \: and \: q \: are \:  \\ integers \: and \: q \: un = to \: 0.

Answers

Answered by prince5132
70

QUESTION :-

★ Show that 0.3333.......∞ can be expressed in the form of p/q where p and q are integers q ≠ 0.

TO SHOW :-

  • 0.3333.......∞ can be expressed in the form of p/q where p and q are integers q ≠ 0.

PROOF :-

 \\  : \implies \displaystyle \sf \: Let  \: x = 0.33.... \infty = 0.\bar{3} \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \: Equation \ 1 \bigg \rgroup \\  \\

 \dag \:   \displaystyle \rm \:Multiply  \: 10 \:  on  \: both  \: the  \: sides. \\  \\  \\

 : \implies \displaystyle \sf \:10x = 3.333........ \infty \\  \\  \\

 : \implies \displaystyle \sf \:10x = 3. \bar{3}\:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup \: Equation \ 2\bigg \rgroup \\  \\

_____________________

 \\   \dashrightarrow \displaystyle \sf  \bigg \lgroup \: Equation \ 2 \bigg \rgroup  - \bigg \lgroup \: Equation \ 1 \bigg \rgroup  \\  \\  \\

 \dashrightarrow \displaystyle \sf10x = 3. \bar{3} \\ \displaystyle \sf \: ( - ) \:  \:  \:  x = 0. \bar{3} \\  \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  } \\  \displaystyle \sf9x = 3.0 \\  \\  \\

 \dashrightarrow \displaystyle \sf9x = 3 \\  \\  \\

 \dashrightarrow \displaystyle \sf \: x =  \dfrac{3}{9}  \\  \\  \\

 \dashrightarrow \underline{ \boxed{ \displaystyle \sf \: x =  \dfrac{1}{3} }} \:  \:  \:  \:  \:  \:  \:  \:   \bigg\lgroup  \displaystyle \sf\dfrac{p}{q} \:  and \: q \neq0\bigg  \rgroup \\  \\

 \therefore \underline{\displaystyle \sf \: 0.333..... \infty  \: can  \: be \:  written  \: as \:  \dfrac{1}{3}}

Answered by Anonymous
123

Given:

  • 0.3333......\infty

To Prove:

  • 0.3333......\infty can be written in the form of p/q

Solution:

Here,

 \rm Let, x = 0.3333...........(i)

  \underline{\boxed{ \color {green} \rm Now, multiplying \: eq(i) \: by \: 10}}

 \rm  \to10  \times  x = 10 \times 0.3333.....

 \rm  \to10x= 3.3333........(ii)

  \underline{\boxed{ \color {blue} \rm Now, subtract \: eq(i) \: by \: eq(ii)}}

 \rm \longrightarrow 10x - x = 3.333.... - 0.3333

 \rm \longrightarrow 9x= 3.333.... - 0.3333

 \rm \longrightarrow 9x= 3 \cancel{.333....} - 0 \cancel{.3333.......}

 \rm \longrightarrow 9x= 3

 \rm \longrightarrow x=  \frac{3}{9}

 \rm \longrightarrow x=  \frac{ \cancel3}{ \cancel9}  =  \frac{1}{3}

 \rm \longrightarrow x=  \frac{1}{3}

Now, \frac{1}{3} is a rational number in the form of \rm\frac{p}{q} where, p and q are integers and q ≠ 0

 \underline{ \boxed{ \bold{Hence, Proved}}}


Anonymous: Nice :)
Similar questions