Math, asked by shiva752, 10 months ago


show \: that \\  \cos^{2}  \alpha  +  \cos ^{2}  \alpha  \times  \cot^{2} \alpha  =  \cot^{2}  \alpha

Attachments:

Answers

Answered by AnaNaqvi
3

Answer:

Given:

{cos}^{2}  \alpha  +  {cos}^{2}  \alpha  \times  {cot }^{2}  \alpha  =  { \cot}^{2}  \alpha  \\</p><p> { \cos( \alpha ) }^{2} (1 +  { \cot( \alpha ) }^{2} ) =  { \cot( \alpha ) }^{2}  \\  { \cos( \alpha ) }^{2}  \times   {cosec}^{2} \alpha   =  { \cot( \alpha ) }^{2}  \\  { \cos( \alpha ) }^{2}  \times  \frac{1}{ { \sin( \alpha ) }^{2} }  =  { \cot( \alpha ) }^{2}  \\  \frac{ { \cos( \alpha ) }^{2} }{ { \sin( \alpha ) }^{2} }  =  { \cot( \alpha ) }^{2}  \\  { \cot( \alpha ) }^{2}  =  { \cot( \alpha ) }^{2}  \\ hence \: proved

Answered by RvChaudharY50
142

To prove :----

  • Cos²A + cos²A*cot²A = cot²A

Solution :-------

Cos²A + cos²A*cot²A = cot²A

→ cos²A*cot²A = cot²A - cos²A

Solving RHS now,

we know that, cotA = CosA/sinA

Putting in RHS we get,

(cos²A/sin²A) - cos²A

Taking LCM now , we get,

(cos²A - cos²A*sin²A)/sin²A

Now we know that, sin²A = (1-cos²A) ,

putting This in Numerator we get,

[cos²A - cos²A(1-cos²A)]/sin²A

→ [ cos²A - cos²A + cos⁴A] /sin²A

→ (cos⁴A)/sin²A

→ (cos²A)*(cos²A/sin²A)

→ cos²A*cot²A = LHS .

Hence, Proved ...

#BAL

#answerwithquality

Similar questions