Attachments:
Answers
Answered by
3
Answer:
Given:
Answered by
142
To prove :----
- Cos²A + cos²A*cot²A = cot²A
Solution :-------
→ Cos²A + cos²A*cot²A = cot²A
→ cos²A*cot²A = cot²A - cos²A
Solving RHS now,
we know that, cotA = CosA/sinA
Putting in RHS we get,
→ (cos²A/sin²A) - cos²A
Taking LCM now , we get,
→ (cos²A - cos²A*sin²A)/sin²A
Now we know that, sin²A = (1-cos²A) ,
putting This in Numerator we get,
→ [cos²A - cos²A(1-cos²A)]/sin²A
→ [ cos²A - cos²A + cos⁴A] /sin²A
→ (cos⁴A)/sin²A
→ (cos²A)*(cos²A/sin²A)
→ cos²A*cot²A = LHS .
Hence, Proved ...
#BAL
#answerwithquality
Similar questions