Math, asked by deepthidepzz12345678, 3 months ago


show \: that \: i ^{m}  + i^{m + 1}  +  {i}^{m + 2}  +  {i}^{m + 3}  = 0 \: for \: all \: m \in \: n


Lovelycandy: Nice coding sis
deepthidepzz12345678: tq sis

Answers

Answered by Anonymous
61

To prove that :

 \sf \: \iota^{m} +  \iota^{m + 1} + { \iota}^{m + 2} + { \iota}^{m + 3} = 0 \: for \: m \in \: N

Now,

 \longrightarrow \sf \: \iota^{m} +  \iota^{m} \iota + { \iota}^{m} { \iota}^{2}  + { \iota}^{m} \iota {}^{3}  \\  \\  \longrightarrow \sf \: \iota^{m}(1   +   \iota +  { \iota}^{2}  +  \iota {}^{3})

We know that,

 \sf \iota =  \sqrt{ - 1}  \\  \\  \implies \sf \:  { \iota}^{2}  =  - 1 \\  \\ \implies \sf \:  { \iota}^{3}  =  { \iota}^{2} \times    \iota =  -  \iota

Accordingly,

  \longrightarrow \sf \: \iota^{m}(1   +   \iota +   - 1   -  \iota) \\  \\  \longrightarrow \sf \:  { \iota}^{m}  \times 0 \\  \\  \longrightarrow \: 0

Hence, proved.


Efra2293: Hello Gawar logon
Efra2293: kutto
Answered by Anonymous
54

To  Show :-

i^{m} + i^{m+1} + i^{m+2} +i^{m+3} = 0 \;  for\; all \; m \in n

Solution :-

★  m is a natural number

★  If m is divided by 4  :-

↦ Let n be the quotient and r be the remainder

↦ Then m = 4n + r where 0 < = r<4

\implies  i^{m} = i^{4n+r}

\implies i^{m} = i^{(4n + r)} \\\\\implies  i^{4n} \times  i^{r} \\\\\implies (i4)^{n} \times i^{r} \\\\\implies (i^{2} \times i^{2})^{n} \times i^{r} \\\\\implies (-1 \times -1)^{n} \times  i^{r} \\\\\implies 1^{n} \times i^{r} \\\\\implies 1 \times i^{r} \\\\\implies i^{r} \\\\

★ ∴ m = r

★  For all natural numbers; r = 0, 1, 2 or 3

∴ m = 0, 1, 2 or 3 (as m = r) ------  [1]

★ Let r = 0

Then m = 0 (as r = m and r = 0)

\implies i^{m} + i^{m+1} + i^{m+2} + i^{m+3} \\\\\implies  i^{0} + i^{1} + i^{2} + i^{3} \\\\\implies  1 + i - 1 + i^{2}i \\\\\implies  1 + i - 1 - i \\\\\implies 0  ----- [2] \\\\

★ Let r = 1

★ Then m = 1 (as r = m and r = 1)

i^{m} + i^{m+1} + i^{m+2} + i^{m+3} \\\\ \implies i^{1} + i^{2} + i^{3} + i^{4} \\\\ \implies i - 1 + i \times i^{2} + i^{2}i^{2}\\\\ \implies i - 1 - i + -1 \times -1 \\\\ \implies  i - 1 - 1 + 1 \\\\  \implies 0 --- [3]\\\\

★ Let r = 2

★ Then m = 2 (as r = m and r = 2)

i^{m} + i^{m+1} + i^{m+2} + i^{m+3} \\\\ \implies i^{3} + i^{4} + i^{5} + i^{6} \\\\ \implies -i + 1 + i + i^{2} \times i^{4} \\\\ \implies  -i + 1 + i - 1 \times  1 \\\\ \implies  -i + 1 + i - 1 \\\\ \implies 0 --- [5] \\\\

➦ From ,

[1], [2], [3], [4] and [5]

we can prove the given statement !

________

All Done ! :D

Similar questions