Math, asked by rakshanivasini01086, 3 months ago


simplify \: (6x + 3y)^{2}  + (6x - 3y) ^{2}

Answers

Answered by Anonymous
12

Answer:

  • Answer of simplify is 72\sf{x}^{2}+18\sf{y}^{2}

Step-by-step explanation:

We know that,

 \:  \:  \sf \rightarrow \:  {(a + b)}^{2}  =  {(a)}^{2}  +  {(b)}^{2}   + 2ab \\  \\  \:  \:  \sf \rightarrow \:  {(a - b)}^{2}  =  {(a)}^{2}  +  {(b)}^{2}  - 2ab

Here we have to use this formula for simplifying

  \:  \:  \sf \: {(6x + 3y)}^{2}  +  {(6x - 3y)}^{2}  \\  \\  \:  \:  \sf \implies \:  {(6x)}^{2}  +  {(3y)}^{2}  + 2.6x.3y +  {(6x)}^{2}  +  {(3y)}^{2}  - 2.6x.3y

Now find square of numbers and multiply the numbers

 \:  \:  \sf \implies \: 36 {x}^{2}  + 9 {y}^{2}  + 36xy + 36 {x}^{2}  + 9 {y}^{2}  - 36xy

Rearrange the numbers

 \:  \:  \sf \implies \: 36 {x}^{2}  + 36 {x}^{2}  + 9 {y}^{2}  + 9 {y}^{2} + 36xy - 36xy

Add the numbers

 \:  \:  \sf \implies \: 72 {x}^{2}  + 18 {y}^{2}  + 36xy - 36xy

Now subtract 36xy and (-36xy)

 \:  \:  \sf \implies \:  72{x}^{2}  + 18 {y}^{2}  + 0

Hence,72\sf{x}^{2}+18\sf{y}^{2}

Similar questions