simplify it
Answers
Answer:
\dfrac{\sin ^4(x)-\cos ^4(x)}{\sin ^2(x)-\cos ^2(x)}=1
sin
2
(x)−cos
2
(x)
sin
4
(x)−cos
4
(x)
=1
Step-by-step explanation:
\dfrac{\sin ^4(x)-\cos ^4(x)}{\sin ^2(x)-\cos ^2(x)}
sin
2
(x)−cos
2
(x)
sin
4
(x)−cos
4
(x)
\mathrm{Factor}\:\sin ^4(x)-\cos ^4(x):\quad (\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))Factorsin
4
(x)−cos
4
(x):(sin
2
(x)+cos
2
(x))(sin(x)+cos(x))(sin(x)−cos(x))
\sin ^4(x)-\cos ^4(x)sin
4
(x)−cos
4
(x)
\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=(a^b)^cApplyexponentrule:a
bc
=(a
b
)
c
\sin ^4(x)=(\sin ^2(x))^2sin
4
(x)=(sin
2
(x))
2
=(\sin ^2(x))^2-\cos ^4(x)=(sin
2
(x))
2
−cos
4
(x)
\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=(a^b)^cApplyexponentrule:a
bc
=(a
b
)
c
\cos ^4(x)=(\cos ^2(x))^2cos
4
(x)=(cos
2
(x))
2
=(\sin ^2(x))^2-(\cos ^2(x))^2=(sin
2
(x))
2
−(cos
2
(x))
2
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=(x+y)(x-y)ApplyDifferenceofTwoSquaresFormula:x
2
−y
2
=(x+y)(x−y)
(\sin ^2(x))^2-(\cos ^2(x))^2=(\sin ^2(x)+\cos ^2(x))(\sin ^2(x)-\cos ^2(x))(sin
2
(x))
2
−(cos
2
(x))
2
=(sin
2
(x)+cos
2
(x))(sin
2
(x)−cos
2
(x))
=(\sin ^2(x)+\cos ^2(x))(\sin ^2(x)-\cos ^2(x))=(sin
2
(x)+cos
2
(x))(sin
2
(x)−cos
2
(x))
\mathrm{Factor}\:\sin ^2(x)-\cos ^2(x)Factorsin
2
(x)−cos
2
(x)
\sin ^2(x)-\cos ^2(x)sin
2
(x)−cos
2
(x)
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=(x+y)(x-y)ApplyDifferenceofTwoSquaresFormula:x
2
−y
2
=(x+y)(x−y)
\sin ^2(x)-\cos ^2(x)=(\sin (x)+\cos (x))(\sin (x)-\cos (x))sin
2
(x)−cos
2
(x)=(sin(x)+cos(x))(sin(x)−cos(x))
=(\sin (x)+\cos (x))(\sin (x)-\cos (x))=(sin(x)+cos(x))(sin(x)−cos(x))
=(\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))=(sin
2
(x)+cos
2
(x))(sin(x)+cos(x))(sin(x)−cos(x))
=\dfrac{(\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))}{\sin ^2(x)-\cos ^2(x)}=
sin
2
(x)−cos
2
(x)
(sin
2
(x)+cos
2
(x))(sin(x)+cos(x))(sin(x)−cos(x))
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=(x+y)(x-y)ApplyDifferenceofTwoSquaresFormula:x
2
−y
2
=(x+y)(x−y)
\sin ^2(x)-\cos ^2(x)=(\sin (x)+\cos (x))(\sin (x)-\cos (x))sin
2
(x)−cos
2
(x)=(sin(x)+cos(x))(sin(x)−cos(x))
=\dfrac{(\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))}{(\sin (x)+\cos (x))(\sin (x)-\cos (x))}=
(sin(x)+cos(x))(sin(x)−cos(x))
(sin
2
(x)+cos
2
(x))(sin(x)+cos(x))(sin(x)−cos(x))
\mathrm{Cancel\:the\:common\:factor:}\:\sin (x)+\cos (x)Cancelthecommonfactor:sin(x)+cos(x)
=\dfrac{(\sin ^2(x)+\cos ^2(x))(\sin (x)-\cos (x))}{\sin (x)-\cos (x)}=
sin(x)−cos(x)
(sin
2
(x)+cos
2
(x))(sin(x)−cos(x))
\mathrm{Cancel\:the\:common\:factor:}\:\sin (x)-\cos (x)Cancelthecommonfactor:sin(x)−cos(x)
=\sin ^2(x)+\cos ^2(x)=sin
2
(x)+cos
2
(x)
\mathrm{Use\:the\:following\:identity}:\quad \cos ^2(x)+\sin ^2(x)=1Usethefollowingidentity:cos
2
(x)+sin
2
(x)=1
=1=1