Math, asked by umiko28, 11 months ago


 {sin}^{ - 1}( - x ) =  { - sin}^{ - 1}x \\  \\ prove

Answers

Answered by Anonymous
3

Step-by-step explanation:

\sf\ {sin}^{ - 1}( - x) =  { - sin}^{ - 1}x   \\  \\ \sf\ solution \\  \\  \sf\ let   \\ \tt\ \implies: {sin}^{ - 1}( - x) = y \\  \\\sf\  \implies: - x = sin \bf\  y  \\  \\  \sf\  \implies:x =  - sin \: y \\  \\\sf\  \implies:x = sin( - y)  \pink{  \:  \:   \:  \:  \:  \:  \:  \:  \because \:  - sin \theta = sin( -  \theta)} \\  \\\sf\  \implies: {sin}^{ - 1}x =  - y \\  \\  \sf\  \implies: {sin}^{ - 1} x -  {sin}^{ - 1}( - x) \\  \\   \boxed{\sf\  \implies: { - sin}^{ - 1}x =  {sin}^{ - 1}( - x)  }

Answered by Anonymous
0

 <body bgcolor = "red">\sf\{sin}^{ - 1}( - x) =  { - sin}^{ - 1}x  } \\  \\ \sf\  \: solution \\  \\  \sf\ let  \\ \tt\ \:  \implies: {sin}^{ - 1}( - x) = y\\  \\\sf\ \:  \implies: - x = sin \bf\  y  \\  \\  \sf\ \:  \implies:x =  - sin \: y \\  \\\sf\ \: \implies:x = sin( - y)  \pink{  \:  \:   \:  \:  \:  \:  \:  \:  \because \:  - sin \theta = sin( -  \theta)} \\  \\\sf\  \implies: {sin}^{ - 1}x =  - y \\  \\  \sf\  \implies: {sin}^{ - 1} x -  {sin}^{ - 1}( - x) \\  \\   \boxed{\sf\  \implies: { - sin}^{ - 1}x =  {sin}^{ - 1}( - x)  }

Similar questions