Math, asked by niarniar909, 10 months ago

=
 { \sin}^{2} 12 -  \frac{1}{ { \tan }^{2} 78?}

Answers

Answered by Anonymous
6

Answer:

{sin}^{2}12 - \frac{1}{{tan}^{2}78} \\ \\ \sf\implies\: {sin}^{2} 12 - \frac{1}{{tan}^{2}(90 - 12)} \\ \\\sf\implies\: {sin}^{2}12 - \frac{1}{{cot}^{2}12} \\ \\\sf\implies\: {sin}^{2}12 - \frac{1}{\frac{{cos}^{2}12}{{sin}^{2}12}} \\ \\

Answered by Anonymous
0

Hey!

 {sin}^{2} 12</strong><strong>°</strong><strong> </strong><strong>\:  -  \frac{1}{ {tan}^{2} 78</strong><strong>°</strong><strong>}

 {sin}^{2} 12</strong><strong>°</strong><strong> -  \frac{ {cos}^{2}78</strong><strong>°</strong><strong> }{ {sin}^{2}78</strong><strong>°</strong><strong>}

  \frac{{sin}^{2}12</strong><strong>°</strong><strong>  \times  { {sin}^{2} }78</strong><strong>°</strong><strong>-  {cos}^{2} 78</strong><strong>°</strong><strong>}{ {sin}^{2}78</strong><strong>°</strong><strong>}

 \frac{ {sin}^{2}12</strong><strong>°</strong><strong> \times {cos}^{2}12</strong><strong>°</strong><strong> -  {cos}^{2}78</strong><strong>°</strong><strong>}{ {sin}^{2}78</strong><strong>°</strong><strong>}

 \frac{ {sin}^{2}6</strong><strong>°</strong><strong> -  {cos}^{2}78</strong><strong>°</strong><strong> }{ {sin}^{2}78</strong><strong>°</strong><strong>}

OR

sin²12° - 1/tan²78°

sin²12° - 1/cot²12°

sin²12° - 1/cos²12°/sin²12°

sin²12° - sin²12°/cos²12°

sin²12°/cos²12° - sin²12°/cos²12°

tan²12° - tan²12°

0

Hope it helps!

Similar questions