Math, asked by ace0, 9 months ago


  { \sin }^{2} 6x -  { \sin }^{2}  =   \sin  2x \:  \sin10x
Solve it:​

Answers

Answered by CrEEpycAmp
14

\underline{\huge{Answer:-}}

 \implies \:  \large \mathcal{( \sin6x -  \sin4x) \: ( \sin6x  +  \sin4x)}

 \implies  \:  \large \mathcal{ \sin( x ) +  \sin  (y )= 2 \sin \:  \frac{x + y}{2} \cos \:  \frac{x - y}{2}    }

 \implies \:  \large \mathcal{2 \sin( \frac{6x + 4x}{2}) \cos( \frac{6x - 4x}{2} )   }

 \implies \:  \large \mathcal{2 \sin(5x) \:  \cos(x)  }

 \implies \:   \large \mathcal{ \sin(x) -  \sin(y)  = 2 \cos( \frac{6x + 4x}{2} )  \sin( \frac{6x - 4x}{2} ) }

 \implies \:  \large \mathcal{2 \cos(5x)  \:  \:  \sin(x) }

 \implies \:  \large \mathcal {(2 \cos(5x)  \sin(x)) \: (2 \sin(5x). \cos(x))  }

 \implies \:  \large \mathcal{2 \sin(x) \:  \cos(x) . \: 2 \sin(5x) . \cos(5x)  }

 \Large  \fbox\mathcal{  \implies \: \sin(2x) . \sin(10x) }

 \implies  \large \mathcal{LHS  = RHS}

Hence, Proved...

Answered by LovelysHeart
32

Answer:

\underline{\huge{Answer:-}}

\implies \: \large \mathcal{( \sin6x - \sin4x) \: ( \sin6x + \sin4x)}

\implies \: \large \mathcal{ \sin( x ) + \sin (y )= 2 \sin \: \frac{x + y}{2} \cos \: \frac{x - y}{2} }

\implies \: \large \mathcal{2 \sin( \frac{6x + 4x}{2}) \cos( \frac{6x - 4x}{2} ) }

\implies \: \large \mathcal{2 \sin(5x) \: \cos(x) }

\implies \: \large \mathcal{ \sin(x) - \sin(y) = 2 \cos( \frac{6x + 4x}{2} ) \sin( \frac{6x - 4x}{2} ) }

\implies \: \large \mathcal{2 \cos(5x) \: \: \sin(x) }

\implies \: \large \mathcal {(2 \cos(5x) \sin(x)) \: (2 \sin(5x). \cos(x)) }

\implies \: \large \mathcal{2 \sin(x) \: \cos(x) . \: 2 \sin(5x) . \cos(5x) }

\implies \large \mathcal{LHS = RHS}

Hence,Proved...

Similar questions