Math, asked by narasimhulu5175253, 6 months ago


 \sin ^{2} 75 +  \sin ^{2} 15

Answers

Answered by Anonymous
103

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large{\boxed{\sf{sin ^2\left(75^{\circ \:}\right)+sin ^2\left(15^{\circ \:}\right)}}}

♣ ᴀɴꜱᴡᴇʀ :

\large{\boxed{\sf{sin ^2\left(75^{\circ \:}\right)+sin ^2\left(15^{\circ \:}\right)=1}}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Use\:the\:following\:identity}:\quad \sin \left(x\right)=\cos \left(90^{\circ \:}-x\right)

\sin \left(75^{\circ \:}\right)=\cos \left(90^{\circ \:}-75^{\circ \:}\right)

=\cos ^2\left(90^{\circ \:}-75^{\circ \:}\right)+\sin ^2\left(15^{\circ \:}\right)

=\cos ^2\left(15^{\circ \:}\right)+\sin ^2\left(15^{\circ \:}\right)

\begin{array}{l}\cos \left(15^{\circ}\right)=\dfrac{\sqrt{2+\sqrt{3}}}{2} \\\\\\\sin \left(15^{\circ}\right)=\dfrac{\sqrt{2-\sqrt{3}}}{2}\end{array}

\sf{\cos ^2\left(15^{\circ \:}\right)+\sin ^2\left(15^{\circ \:}\right)=\left(\dfrac{\sqrt{2+\sqrt{3}}}{2}\right)^2+\left(\dfrac{\sqrt{2-\sqrt{3}}}{2}\right)^2}

\huge\boxed{\sf{=1}}

Similar questions