Math, asked by SouvikSardar, 1 year ago


 { \sin}^{2} \alpha  +  { \sin}^{2}(120 -  \alpha ) +  { \sin}^{2}(120 +  \alpha ) =  \frac{3}{2 }  \\  \\ prove \: it
prove it

Answers

Answered by harshvevo123431
0

Sine and cosine \sin(\theta) = \cos(90^\circ-\theta)sin(θ)=cos(90

−θ)sine, left parenthesis, theta, right parenthesis, equals, cosine, left parenthesis, 90, degree, minus, theta, right parenthesis

\cos(\theta) = \sin(90^\circ-\theta)cos(θ)=sin(90

−θ)cosine, left parenthesis, theta, right parenthesis, equals, sine, left parenthesis, 90, degree, minus, theta, right parenthesis

Tangent and cotangent \tan(\theta) = \cot(90^\circ-\theta)tan(θ)=cot(90

−θ)tangent, left parenthesis, theta, right parenthesis, equals, cotangent, left parenthesis, 90, degree, minus, theta, right parenthesis

\cot(\theta) = \tan(90^\circ-\theta)cot(θ)=tan(90

−θ)cotangent, left parenthesis, theta, right parenthesis, equals, tangent, left parenthesis, 90, degree, minus, theta, right parenthesis

Secant and cosecant \sec(\theta) = \csc(90^\circ-\theta)sec(θ)=csc(90

−θ)


SouvikSardar: please solve the problem on a white paper and send me a picture of that
Similar questions