Math, asked by rramprsadkashyap2, 5 months ago


 sin^2x -  cos^2x

Answers

Answered by Anonymous
22

Step-by-step explanation:

sin^2x-cos^2x=1

mark as brilliant

Answered by bhavadharini0
1

Answer:

The formulas that we use here are:-

sin^2x+cos^2x=1

sin^2x=1- cos^2x

cos^2x=1- sin^2x

sinx/cosx=tanx

Step-by-step explanation:

 \sin {}^{2} x -  \cos {}^{2} x \\ 1 -  \cos ^{2} x -  \cos {}^{2} x \\ 1 - 2 \cos {}^{2} x \\ or \\ sin {}^{2} x -  \cos {}^{2} x \\  \sin {}^{2} x - (1 -  \sin {}^{2}x) \\ 2 \sin {}^{2} x - 1 \\ or \\  \sin {}^{2} x -  \cos {}^{2} x \\   \frac{  \sin^{2} x -  \cos {}^{2}x      }{1}  \\  \frac{ \sin {}^{2} x -  \cos {}^{2} x  }{ \sin {}^{2} x +  \cos {}^{2}x    }  \\ dividing \: the \: whole \: equation \: by \:  \cos {}^{2} x \: we \: get \\   \frac{ \tan {}^{2} x - 1 }{ \tan {}^{2} x + 1 }

Similar questions