Answers
Answered by
12
Answer:
Prove that :
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ=1.
Answer
sin
6
θ+cos
6
θ+3sin
2
θcos
2
θ
⇒LHS=(sin
2
θ)
3
+(cos
2
θ)
3
+3sin
2
θcos
2
θ
Using, [a
3
+b
3
=(a+b)
3
−3ab(a+b)]
⇒LHS=(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)
3
+3sin
2
θcos
2
θ
⇒LHS=1−3sin
2
θcos
2
θ+3sin
2
θcos
2
θ=1=RHS
Step-by-step explanation:
Hope it will help you. Have a great day.
Similar questions