![(sin a + cos a)^{2} + (sin a - cos a) ^{2} (sin a + cos a)^{2} + (sin a - cos a) ^{2}](https://tex.z-dn.net/?f=+%28sin+a+%2B+cos+a%29%5E%7B2%7D++%2B+%28sin+a++-+cos+a%29+%5E%7B2%7D++)
Answers
Answered by
39
Given :-
- ( sin A + cos A )² + ( sinA - cosA)².
To Find :-
- Its simplified value.
Formulae Used :-
- ( a + b )² = a² + b² + 2ab .
- ( a - b )² = a² + b² - 2ab .
- sin² A + cos²A = 1 .
Solution :-
Given to us is : ( sin A + cos A )² + ( sinA - cosA)².
= ( sin A + cos A )² + ( sinA - cosA)².
= sin²A + cos²A + 2sinA.cosA + sin²A + cos²A - 2sinA.cosA
= 1 + 1 + 2sinA.cosA - 2sinA.cosA
= 1 + 1 + 0.
= 2 .
Similar questions