Math, asked by paruadebasis2000, 10 months ago


 \sin( \alpha  +  \beta)  =4 \div 5 and \sin( \alpha  -  \beta)  = 5 \div 13  what is the result of \tan(2 \alpha )


Attachments:

Answers

Answered by rishu6845
0

Answer:

tan2α = 63 / 16

Step-by-step explanation:

1) plzz refer the attachment

2) First we find value of Cos( α + β )

and Cos(α - β ) , by using a formula

Cos²θ = 1 - Sin²θ

3) Now we find values of tan(α + β ) and

tan ( α - β ) , by using a formula given below

tanθ = Sinθ / Cosθ

4) Then we apply a formula,

tan( θ₁ + θ₂ ) = ( tanθ₁ + tanθ₂) / ( 1 - tanθ₁ tanθ₂ )

and we get value of tan2α

Additional information--->

1) tan ( x - y ) = ( tanx - tany ) /( 1 + tanx tany )

2) tan2x = 2tanx / ( 1 - tan²x )

3) Sin2x = 2tanx / ( 1 - tan²x )

4) Cos2x = ( 1 - tan²x ) / ( 1 + tan²x )

Attachments:
Answered by Muralidh
0

Answer:

tan 2\alpha  = \frac{63}{16}

Step-by-step explanation:

sin(\alpha + \beta ) = \frac{4}{5}

sin(\alpha - \beta ) = \frac{5}{13}

cos(\alpha + \beta ) = \sqrt{1 - sin^{2} (\alpha + \beta  ) }

= \sqrt{1 - \frac{16}{25} }

= \sqrt{\frac{25-16}{25} }

= \sqrt{\frac{9}{25} } = \frac{3}{5}

Similarly, we can find cos (\alpha - \beta) = \frac{12}{13}

Now,

tan (\alpha + \beta) = \frac{\frac{4}{5} }{\frac{3}{5} }  = \frac{4}{3}

tan (\alpha - \beta) = \frac{\frac{5}{13} }{\frac{12}{13} }  = \frac{5}{12}

tan 2\alpha  = tan[(\alpha + \beta) + (\alpha - \beta)]

= \frac{tan (\alpha + \beta) + tan (\alpha - \beta)}{1 - tan (\alpha + \beta) tan (\alpha - \beta)}

= \frac{\frac{4}{3} + \frac{5}{12}}{1 - (\frac{4}{3})(\frac{5}{12} )}

= \frac{\frac{21}{12} }{\frac{16}{36} }

= \frac{21 (3)}{16}  = \frac{63}{16}

Similar questions