Math, asked by Anonymous, 1 year ago


 \sin( \alpha )  +  \cos( \alpha ) =  \sqrt{2} \cos( \alpha )    \\
then find
 \cos( \alpha   )  -  \sin( \alpha ) =

Answers

Answered by ITzBrainlyGuy
4

\huge\green{\mathbb{\underline{\underline{ANSWER}}}}

GIVEN,

 \sin( \alpha ) +  \cos( \alpha ) =  \sqrt{2} \cos( \alpha )  \\

-------------(1)

{\mathrm{\underline{\underline\red{We  \: Need \:  To  \: Find  \: That \:  :-}}}}

let \\  \cos( \alpha )   -  \sin( \alpha ) = x

--------------(2)

taking equation (1) and S.O.B.S(squaring on both sides)

 {( \sin( \alpha )  +  \cos( \alpha )) }^{2}  =  {( \sqrt{2} \cos( \alpha ) ) }^{2}  \\     { \sin( \alpha ) }^{2}  + 2 \sin( \alpha )  .\cos( \alpha )   + { \cos( \alpha ) }^{2}  = 2 { \cos( \alpha ) }^{2}  \\

assuming this equation as equation (3)

taking equation (2) and S.O.B.S(squaring on both sides)

 {( \cos( \alpha )  -  \sin( \alpha ) )}^{2}  =  {x}^{2}  \\  { \cos( \alpha ) }^{2}  - 2 \sin( \alpha) . \cos( \alpha ) +  { \sin(  \alpha ) }^{2}  =  {x}^{2}  \\

assuming this equation as equation (4)

now,

adding equation (3)+equation (4)

then,

  \:  \:  \:  \:  \:   { \sin( \alpha ) }^{2}  + 2 \sin( \alpha ) . \cos( \alpha ) +  { \cos( \alpha ) }^{2} =   2 { \cos( \alpha ) }^{2}  \\  + {\underline{\underline{ { \sin( \alpha ) }^{2}  - 2 \sin( \alpha ). \cos( \alpha ) +  { \cos( \alpha ) }^{2}    =  {x}^{2} }}}  \\ </p><p></p><p></p><p> \:  \:  \:  \: 2 { \sin( \alpha ) }^{2}  + 2 { \cos( \alpha ) }^{2}  = 2 { \cos( \alpha ) }^{2}  +  {x}^{2}  \\ \\  \:  \:  \:  \: 2 { \sin( \alpha ) }^{2}  + 2 { \cos( \alpha ) }^{2}  - 2 { \cos( \alpha ) }^{2}  =  {x}^{2}  \\   \:  \:  \:  \:  {x}^{2}  = 2 { \sin( \alpha ) }^{2}  \\ \:  \:  \:  \:   x =  \sqrt{2 { \sin( \alpha ) }^{2} } \\  \:  \:  \:  \: x =  \sqrt{2}  . \sqrt{ { \sin( \alpha ) }^{2} }  \\

{\underline{\underline\red{\mathrm{x =  \sqrt{2}  \sin( \alpha ) }}}}

hope this helps you please mark me as brainliest

Similar questions