Math, asked by manjitbro2mailcom, 4 months ago


 sin \alpha  =   \frac{3}{4}  \cos \alpha and \tan \alpha

Answers

Answered by prince5132
23

GIVEN :-

  • sina = 3/4.

TO FIND :-

  • The value of cosa and tana.

SOLUTION :-

As we know that,

cos∅ = (1 - sin²)

tan∅ = sin∅/cos∅

Firstly we will find the value of cosa,

 \implies \displaystyle \sf \:  \cos(  \alpha )  =  \sqrt{1 -  \sin ^{2} (  \alpha ) }  \\  \\

 \implies \displaystyle \sf \:  \cos(  \alpha )  =  \sqrt{ 1 -  \bigg( \frac{3}{4} \bigg) ^{2}  }  \\  \\

\implies \displaystyle \sf \:  \cos(  \alpha )  = \sqrt{1 -  \frac{9}{16} }  \\  \\

\implies \displaystyle \sf \:  \cos(  \alpha )  = \sqrt{ \frac{16 - 9}{16} }  \\  \\

\implies \displaystyle \sf \:  \cos(  \alpha )  = \sqrt{ \frac{7}{16} }  \\  \\

\implies  \underline{ \boxed{ \displaystyle \sf \:  \cos(  \alpha )  = \frac{ \sqrt{7} }{4}  }}  \\  \\

Now we will Put the value of tana,

\implies \displaystyle \sf \:  \tan(  \alpha )  = \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\

\implies \displaystyle \sf \:  \tan(  \alpha )  =  \frac{ \bigg( \dfrac{3}{4} \bigg) }{ \bigg( \dfrac{ \sqrt{7} }{4}  \bigg)}  \\  \\

\implies \displaystyle \sf \:  \tan(  \alpha )  = \frac{3}{4}  \times  \frac{4}{ \sqrt{7} }  \\  \\

\implies \underline{ \boxed{ \displaystyle \sf \:  \tan(  \alpha )  = \frac{3}{ \sqrt{7} } }}

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
69

Question

 sin \alpha = \frac{3}{4} \cos \alpha and \tan \alpha

___________________________________

Solution

Given  \rightarrow   \frac{3}{4}

 \Rightarrow \frac{BC}{AC} =  \frac{3}{4}

BC = 3K and AC = 4k

 \because k is constant of Proportionality.

___________________________________

Using Pythagoras Theorem ⤵

{AC}^{2} = {AB}^{2} + {BC}^{2}

{AB}^{2} = {AC}^{2} -  {BC}^{2}

{AB}^{2} = {4k}^{2} -  {3k}^{2}

{AB}^{2} = {16k}^{2} - {9k}^{2}

⇛AB =  \sqrt{7}

___________________________________

So,

⇛Cos A  \frac{AB}{AC}

  \frac{ \sqrt{7k} }{4k}

⇛Cos A  \frac{ \sqrt{7} }{4}

___________________________________

⇛Tan A  \frac{BC}{AB}

  \frac{3k}{ \sqrt{7k} }

⇛ Tan A  \frac{3}{ \sqrt{7} }

___________________________________

Similar questions