Math, asked by advsanjaychandak, 1 year ago


 \sin(n + 1) x \sin(n + 2) x  +  \cos(n + 1) x \cos(n + 2) x =  \cos(x)
prove it ❗☺​

Answers

Answered by kaushik05
10

hope this helps you☺️☺️☺️

Attachments:
Answered by Anonymous
9

To prove :

\sf sin (n + 1)x . sin (n + 2)x + cos (n + 1)x . cos(n + 2 )x = cos (x)

\underline {\textbf{\large{Proof:}}}

here, remember that,

\sf cos ( A - B) = cosA.cosB + sinA .sinB

LHS = \sf sin (n + 1)x . sin (n + 2)x + cos (n + 1)x . cos(n + 2 )x

= \sf[ (cos (x ((n + 1) -(n +2)))]

= \sf[(cos(x (n + 1 - n - 2 )))]

= \sf[cos (x (-1))]

= \sf[cos (-x)]

we know,

\sf [ cos (-theta) = cos (theta)]

therefore,

= \sf cos (-x) = cos(x)

= RHS

hence proved

Similar questions