Please guys help fast. Today is my exam.
Answers
GIVEN:
- (sin θ + cosec θ)² + (cos θ + sec θ) = 7 + tan² θ + cot² θ
TO PROVE:
- (sin θ + cosec θ)² + (cos θ + sec θ) = 7 + tan² θ + cot² θ
FORMUALE USED:
★ (A + B)² = A² + 2AB + B²
★ Sin θ = 1 / Cosec θ
★ Cos θ = 1 / Sec θ
★ Sin² θ + Cos² θ = 1
★ Sec² θ = 1 + Tan² θ
★Cosec² θ = 1 + Cot² θ
PROOF:
Take (sin θ + cosec θ)² + (cos θ + sec θ)² as L.H.S and 7 + tan² θ + cot² θ as R.H.S
★L.H.S:
(sin θ + cosec θ)² + (cos θ + sec θ)²
(A + B)² = A² + 2AB + B²
(sin² θ + cosec² θ + 2sin θ cosec θ + cos² θ + sec² θ + 2 sec θ cos θ)
Sin θ = 1 / Cosec θ
Cos θ = 1 / Sec θ
sin² θ + cos² θ + cosec² θ + 2 (cosec θ / cosec θ) + sec² θ + 2 (sec θ / sec θ )
Sin² θ + Cos² θ = 1
1 + cosec² θ + 2 + sec² θ + 2
5 + cosec² θ + sec² θ
Sec² θ = 1 + Tan² θ
Cosec² θ = 1 + Cot² θ
5 + 1 + tan² θ + 1 + cot² θ
7 + tan² θ + cot² θ
★R.H.S
7 + tan² θ + cot² θ
L.H.S = R.H.S
(sin θ + cosec θ)² + (cos θ + sec θ) = 7 + tan² θ + cot² θ
★★HENCE PROVED★★
Need to prove:
(sinθ + cosecθ)² + (cosθ + secθ)² = 7 + tan²θ + cot²θ
Solution:
Firstly taking LHS from the given question
(sinθ + cosecθ)² + (cosθ + secθ)²
Simplifying using (a + b)² = a² + 2ab + b²
→ sin²θ + cosec²θ + 2(sinθ)(cosecθ) + cos²θ + sec²θ + 2(cosθ)(secθ)
Here , sinθcosecθ = 1 because sinθ & cosθ both are reciprocal to each other . Similarly cosθsecθ = 1
→ (sin²θ + cos²θ) + 2 + 2 + cosec²θ + sec²θ
→ 1 + 2 + 2 + cosec²θ + sec²θ. [°.° 1st identity]
Now , substituting
• cosec²θ = 1 + cot²θ. [°.° 3rd identity]
• sec²θ = 1 + tan²θ. [°.° 2nd identity]
→ 5 + 1 + cot²θ + 1 + tan²θ
→ 7 + cot²θ + tan²θ. [LHS]
Now , comparing with RHS
7 + cot²θ + tan²θ = 7 + cot²θ + tan²θ
LHS = RHS
Hence , proved !