Math, asked by ItzShinyQueen13, 10 days ago


  sin \theta =   \sqrt{ \frac{1-x}{1+x} }\  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \ \  \textless \ br /\  \textgreater \
Prove  \: that  \: \:  \:  \:  \:   \frac{sec\theta \:  + \:   tan\theta}{sec\theta \: - \: tan\theta}  =  \frac{1+  \sqrt{1- {x}^{2} } }{x}
________________​

Answers

Answered by harshb77
0

Step-by-step explanation:

here  \:  \: © =(θ) \\  \\ \frac{sec©+tan©}{sec©-tan©}  \\  =  \frac{ \frac{1}{cos©}+ \frac{sin©}{cos©} } { \frac{1}{cos©} - \frac{sin©}{cos©} }  \\  =  \frac{1 + sin©}{1-sin©}  \\  =  \frac{1 +  \sqrt{ \frac{1 - x}{1 + x} } }{1 -  \sqrt{ \frac{1 - x}{1 + x} } }  \\  =  \frac{ \sqrt{1 + x} +  \sqrt{1 - x}  }{ \sqrt{1 + x}  -  \sqrt{1 - x} }  \\  =( \frac{ \sqrt{1 + x} +  \sqrt{1 - x}  }{ \sqrt{1 + x}  -  \sqrt{1 - x} }  )( \frac{\sqrt{1 + x} +  \sqrt{1 - x} }{\sqrt{1 + x} +  \sqrt{1 - x} } ) \\  =  \frac{(\sqrt{1 + x} +  \sqrt{1 - x} )^{2} }{1 + x - 1 + x}  \\  =  \frac{1 + x + 2 \sqrt{1 -  {x}^{2}  }  + 1 - x}{1 + x - 1 + x}  \\  =  \frac{2 + 2 \sqrt{1 -  {x}^{2} } }{2x}  \\  =  \frac{1 +  \sqrt{1 -  {x}^{2} } }{x}

Answered by hbs23019
0

Answer:

vsggdgdgd

Step-by-step explanation:

hjsjehejnsbdbebrbrbrbrbrjrj

Similar questions