Math, asked by DonaSharmahidanz, 1 year ago

sin(x)+sin(\frac{x}{2})=0,\:\:\: 0\leq x\leq2\pi
Find all the value of x

Answers

Answered by shadowsabers03
6

Here we use a  'sum - to - product'  formula, which is none other than,

\Large\text{$\sin\alpha+\sin\beta=2\sin\left(\dfrac{\alpha+\beta}{2}\right)\cos\left(\dfrac{\alpha-\beta}{2}\right)$}

Here,

\alpha=x\ \ \ ; \ \ \ \beta=\dfrac{x}{2}

So,

\begin{aligned}&\sin(x)+\sin\left(\frac{x}{2}\right)=0\\ \\ \Longrightarrow\ \ &2\sin\left(\dfrac{x+\frac{x}{2}}{2}\right)\cos\left(\frac{x-\frac{x}{2}}{2}\right)=0\\ \\ \Longrightarrow\ \ &2\sin\left(\frac{3x}{4}\right)\cos\left(\frac{x}{4}\right)=0\\ \\ \Longrightarrow\ \ &\sin\left(\frac{3x}{4}\right)\cos\left(\frac{x}{4}\right)=0\end{aligned}

From this we get,

\displaystyle \sin\left(\frac{3x}{4}\right)=0

or

\displaystyle \cos\left(\frac{x}{4}\right)=0

Case 1:  Consider  \displaystyle \sin\left(\frac{3x}{4}\right)=0.

We may recall,

\sin\left(n\pi\right)=0

Here,  n\in \mathbb{Z}.

From this identity, we get,

\dfrac{3x}{4}=n\pi\ \ \ \ \ \Longrightarrow\ \ \ \ \ x=\dfrac{4n\pi}{3}

Now we have to find out in which cases  \dfrac{4n\pi}{3}\in[0,\ 2\pi].

Let it be, so that,  0\leq \dfrac{4n\pi}{3}\leq 2\pi.

On multiplying it by  \dfrac{3}{4\pi},  we get  0\leq n\leq \dfrac{3}{2}.

But since  n\in\mathbb{Z},\ \ \ n\in\{0,\ 1\}.

Taking n = 0,  \mathbf{x=0}.

Taking n = 1,  \mathbf{x=\dfrac{4\pi}{3}}.

So we got two values.

Case 2:  Consider  \displaystyle \cos\left(\frac{x}{4}\right)=0.

Here we may recall  \cos\left(\dfrac{\pi}{2}+n\pi\right)=0  where  n\in\mathbb{Z}.

So we get,

\dfrac{x}{4}=\dfrac{\pi}{2}+n\pi\ \ \ \ \ \Longrightarrow\ \ \ \ \ x=2\pi(2n+1)

Now we find in which cases  2\pi(2n+1)\in[0,\ 2\pi].

Let it be, so that,  0\leq 2\pi(2n+1)\leq 2\pi.

On dividing it by  2\pi,  we get  0\leq 2n+1\leq 1.

On subtracting 1 from it, we get  -1\leq 2n\leq 0.

And on dividing it by 2, we get  -\dfrac{1}{2}\leq n\leq 0.

From this we only get  n = 0.

Hence  \mathbf{x=2\pi}.

So we got "3" possible values for  x !

\large \text{$1.\ \ x = 0$}\\ \\ \\ \\ \large \text{$2.\ \ x = \dfrac{4\pi}{3}$}\\ \\ \\ \\ \large \text{$3.\ \ x = 2\pi$}

Graph of  \sin(x)+\sin\left(\dfrac{x}{2}\right)  is attached.

Here x coordinates of points A and C are 0 and 2π respectively, and the y coordinates of these points are 0. This implies that  x = 0  and  x = 2π  are true.

And there is also another point B whose x coordinate is 4π/3 and y coordinate is 0. This implies that  x = 4π/3  is true.

Since  0\leq x\leq 2\pi,  there's no need to consider the other points in the graph whose y coordinate is 0.

Done!

Attachments:
Similar questions