Math, asked by sohebsiddique18, 11 months ago


sinx + cosx \div   \sqrt{1 + sin2x}

Answers

Answered by Sharad001
35

(1) Question :-

if your question is -

Differentiate it :

 \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} } \\

Answer :-

\leadsto \sf \frac{ \cos x -  \sin x}{ \sin x +  \cos x}  +  \frac{ \cos 2x}{1 +  \sin2x}  \:  \\

Explanation :-

Here we used quotient rule of differentiation :

 \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} } \\  \\  \sf differentiate \: with \: respect \: to \: x \\  \\  \leadsto \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  \frac{ \sin x +  \cos x}{2 \sqrt{1 +  \sin2x} }( 2 \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  \leadsto \: \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  \frac{ \sin x +  \cos x}{2 \sqrt{ {( \sin x +  \cos x)}^{2} } }( 2 \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  \leadsto \:  \: \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  (  \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  or \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sqrt{1 +  \sin2x} }  -  \frac{ \cos2x}{1 +  \sin2x}  \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sqrt{ {( \sin x +  \cos x)}^{2} } }  +  \frac{ \cos2x}{1 +  \sin2x}  \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sin x +  \cos x}  +  \frac{ \cos 2x}{1 +  \sin2x}

hope this will help you .

\________________/

If your question is -

(2) Question :-

simplify it

  \leadsto \sf \: \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} }  \\

Answer :-

\leadsto \sf \: \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} }    = 1 \\

Explanation :-

We have

 \leadsto \sf \: \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} }  \\ \:  \:  \\  \because \sf  \sin2x = 2 \sin x \cos x \\  \\  \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{1 + 2 \sin x \cos x} }  \\  \\  \because \:  { \sin}^{2}  \theta +   { \cos}^{2}  \theta = 1 \\  \\  \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{ { \sin}^{2}x +  { \cos}^{2}x + 2 \sin x \cos x  } }  \\  \\  \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{ {( \sin x +  \cos x) }^{2} } }  \\  \\  \leadsto \:  \frac{ \sin x   +  \cos x}{ \sin x +  \cos x}  = 1 \\

Similar questions