Math, asked by sohebsiddique18, 1 year ago


sinx + cosx \div  \sqrt{1 + sin2x}
Derivative​

Answers

Answered by Sharad001
23

Question :-

Differentiate it :

 \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} } \\

Answer :-

\leadsto \sf \frac{ \cos x -  \sin x}{ \sin x +  \cos x}  +  \frac{ \cos 2x}{1 +  \sin2x}  \:  \\

Explanation :-

Here we used quotient rule of differentiation :

 \leadsto \sf \frac{ \sin x +  \cos x}{ \sqrt{1 +  \sin2x} } \\  \\  \sf differentiate \: with \: respect \: to \: x \\  \\  \leadsto \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  \frac{ \sin x +  \cos x}{2 \sqrt{1 +  \sin2x} }( 2 \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  \leadsto \: \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  \frac{ \sin x +  \cos x}{2 \sqrt{ {( \sin x +  \cos x)}^{2} } }( 2 \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  \leadsto \:  \: \sf \frac{  \sqrt{1 +  \sin2x}( \cos x  -   \sin x) -  (  \cos2x) }{  {( \sqrt{1 +  \sin2x} )}^{2}  } \\   \\  or \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sqrt{1 +  \sin2x} }  -  \frac{ \cos2x}{1 +  \sin2x}  \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sqrt{ {( \sin x +  \cos x)}^{2} } }  +  \frac{ \cos2x}{1 +  \sin2x}  \\  \\  \leadsto \sf \frac{ \cos x -  \sin x}{ \sin x +  \cos x}  +  \frac{ \cos 2x}{1 +  \sin2x}

hope this will help you .

Similar questions