Math, asked by Anonymous, 8 hours ago

   \small\displaystyle \sf \lim_{n \to \infty} \bigg( \frac{1}{n}  \sqrt{ \frac{1}{n} }  +  \frac{1}{n}  \sqrt{ \frac{2}{n} }  +  \frac{1}{n}  \sqrt{ \frac{ 3}{n} }  +  \cdot \cdot \cdot +  \frac{1}{n}  \sqrt{ \frac{n}{n} }  \bigg)

Answers

Answered by senboni123456
10

Step-by-step explanation:

We have,

 \displaystyle \sf \lim_{n \to \infty} \bigg( \frac{1}{n} \sqrt{ \frac{1}{n} } + \frac{1}{n} \sqrt{ \frac{2}{n} } + \frac{1}{n} \sqrt{ \frac{ 3}{n} } + \cdots+ \frac{1}{n} \sqrt{ \frac{n}{n} } \bigg)

 \displaystyle \sf  = \lim_{n \to \infty}  \dfrac{1}{n} \bigg( \sqrt{ \frac{1}{n} } +  \sqrt{ \frac{2}{n} } + \sqrt{ \frac{ 3}{n} } + \cdots \sqrt{ \frac{n}{n} } \bigg)

 \displaystyle \sf  = \lim_{n \to \infty}  \dfrac{1}{n} \bigg( \sum ^{n}_{r = 1} \sqrt{ \frac{r}{n} } \bigg)

 \displaystyle =  \int^{1}_{0} \sqrt{x}  \: dx

 \displaystyle =  \dfrac{2}{3}   \left[x ^{ \frac{3}{2} } \right]^{1}_{0}

 \displaystyle =  \dfrac{2}{3}   \left[1 - 0\right]

=\dfrac{2}{3}

Answered by OoAryanKingoO78
8

Answer:

\dag \sf \green{Solution}

We have,

 \displaystyle \sf \lim_{n \to \infty} \bigg( \frac{1}{n} \sqrt{ \frac{1}{n} } + \frac{1}{n} \sqrt{ \frac{2}{n} } + \frac{1}{n} \sqrt{ \frac{ 3}{n} } + \cdots+ \frac{1}{n} \sqrt{ \frac{n}{n} } \bigg)

 \displaystyle \sf  = \lim_{n \to \infty}  \dfrac{1}{n} \bigg( \sqrt{ \frac{1}{n} } +  \sqrt{ \frac{2}{n} } + \sqrt{ \frac{ 3}{n} } + \cdots \sqrt{ \frac{n}{n} } \bigg)

 \displaystyle \sf  = \lim_{n \to \infty}  \dfrac{1}{n} \bigg( \sum ^{n}_{r = 1} \sqrt{ \frac{r}{n} } \bigg)

 \displaystyle =  \int^{1}_{0} \sqrt{x}  \: dx

 \displaystyle =  \dfrac{2}{3}   \left[x ^{ \frac{3}{2} } \right]^{1}_{0}

 \displaystyle =  \dfrac{2}{3}   \left[1 - 0\right]

=\dfrac{2}{3}

____________________

Similar questions