Math, asked by Anonymous, 1 day ago

 \small\displaystyle \sf \red{Evaluate \int_{C} \frac{1}{2z + 3} dz \: where \: c \: is \: a \: circle \: |z| = 2}

Answers

Answered by sajan6491
15

 \displaystyle  \tt\frac{1}{2z + 3}  dz

 \displaystyle  \tt \int_{c} \frac{1}{2(z +  \frac{3}{2})dz }

 \displaystyle  \frac{1}{2}  \tt \int_{c} \frac{1}{z  +  \frac{3}{2} dz}

 \displaystyle  \frac{1}{2}  \tt 2\pi  if \bigg ( \frac{ - 3}{2}  \bigg)

 \displaystyle   \tt\pi  i \frac{1}{2z + 3}  dz

 \displaystyle   \tt\pi  i

Answered by saichavanusa12
15

Answer:

Question-

 \small\displaystyle \sf \red{Evaluate \int_{C} \frac{1}{2z + 3} dz \: where \: c \: is \: a \: circle \: |z| = 2}

Answer-

 =  \int \limits_{c} \frac{1}{2(z +  \frac{3}{2})dz }

 =  \frac{1}{2}  \int \limits_{c} \:  \frac{1}{z +  \frac{3}{2}dz }

 =  \frac{1}{2} 2 \pi \: i \int( \frac{ - 3}{2} )

 =  \pi \: i  \frac{1}{2z + 3} dz

 =  \pi \: i

Similar questions