Math, asked by diliptalpada265, 15 days ago


\small\mathtt\red{if \: y = \frac { a x ^ { 3 } } { ( x - a ) ( x - b ) ( x - c ) } + \frac { b x } { ( x - b ) ( x - c ) } + \frac { c } { ( x - c ) } + 1 \: prove \: that \:\left. \begin{array}  { l  }  { \frac { y ^ { \prime } } { y } = \frac { 1 } { x } [ \frac { a } { a - x } + \frac { b } { b - x } + \frac { a } { c - x } ] }  \end{array} \right.}
Answer with proper explanation.

The correct respondent will get 100+ thanks.


Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​

Answers

Answered by parmarvaidehi03
3

Answer:

it's your answer!!!

hope it is correct!

Attachments:
Answered by mathdude500
4

Appropriate Question :-

 \sf \: If \: y = \frac { a x ^ { 3 } } { ( x - a ) ( x - b ) ( x - c ) } + \frac { b x } { ( x - b ) ( x - c ) } + \frac { c } { ( x - c ) } + 1, \: prove \: that

\rm :\longmapsto\:\dfrac{y'}{y}  = \dfrac{1}{x} \bigg[ \dfrac{a}{(a - x)} + \dfrac{b}{(b - x)}  + \dfrac{c}{(c - x)}\bigg]

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac { b x } { ( x - b ) ( x - c ) } + \dfrac { c } { ( x - c ) } + 1

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac { b x } { ( x - b ) ( x - c ) } + \dfrac { c + x - c } { ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac { b x } { ( x - b ) ( x - c ) } + \dfrac {x} { ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac { b x  + x(x - b)} { ( x - b ) ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac { b x  + {x}^{2}  - bx} { ( x - b ) ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 } } { ( x - a ) ( x - b ) ( x - c ) } + \dfrac {{x}^{2}} { ( x - b ) ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 }  +  {x}^{2}(x - a) } { ( x - a ) ( x - b ) ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac { a x ^ { 2 }  +  {x}^{3} - a {x}^{2}  } { ( x - a ) ( x - b ) ( x - c ) }

\rm :\longmapsto\:\sf \: y = \dfrac {{x}^{3} } { ( x - a ) ( x - b ) ( x - c ) }

On taking log both sides, we get

\rm :\longmapsto\:\sf \: logy =log\bigg[ \dfrac {{x}^{3} } { ( x - a ) ( x - b ) ( x - c ) }\bigg]

We know,

\boxed{\tt{ log \frac{x}{y}  = logx \:  -  \: logy \: }}

and

\boxed{\tt{ log {x}^{y} = y \: logx \: }}

So, using this, we get

\rm :\longmapsto\:logy = 3logx - log(x - a) - log(x - b) - log(x - c)

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy =\dfrac{d}{dx}\bigg[ 3logx - log(x - a) - log(x - b) - log(x - c)\bigg]

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{3}{x} -  \dfrac{1}{x - a}  - \dfrac{1}{x - b} - \dfrac{1}{x - c}

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{3}{x} +  \dfrac{1}{a - x} +  \dfrac{1}{b - x} + \dfrac{1}{c - x}

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{1}{x} + \dfrac{1}{x}  + \dfrac{1}{x}  +  \dfrac{1}{a - x} +  \dfrac{1}{b - x} + \dfrac{1}{c - x}

can be re-arranged as

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{1}{x} + \dfrac{1}{a - x}  + \dfrac{1}{x}  +  \dfrac{1}{b - x} +  \dfrac{1}{x} + \dfrac{1}{c - x}

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{a - x + x}{x(a - x)} + \dfrac{x + b - x}{x(b - x)}  + \dfrac{x - c + x}{x(c-x)}

\rm :\longmapsto\: \dfrac{1}{y}y' =  \dfrac{a}{x(a - x)} + \dfrac{b}{x(b - x)}  + \dfrac{c}{x(c - x)}

\rm :\longmapsto\: \dfrac{1}{y}y' = \dfrac{1}{x} \bigg[ \dfrac{a}{(a - x)} + \dfrac{b}{(b - x)}  + \dfrac{c}{(c - x)}\bigg]

\bf :\longmapsto\:\dfrac{y'}{y}= \dfrac{y}{x} \bigg[ \dfrac{a}{(a - x)} + \dfrac{b}{(b - x)}  + \dfrac{c}{(c - x)}\bigg]

 \green{\large{\boxed{\sf{Hence, Proved}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More To Learn :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions