Math, asked by ItzAditt007, 10 months ago

{\small{\red{\mathcal{\blue{\underline{\underline{TodaY'S QuEsTiOn.}}}}}}}

{\red{\mathbb{QUE:-}}}

• In an AP sum of n terms = 77.
• Sum of (n-5) terms of the same AP = 7.
• The common difference of the AP iS 3.

Then Find out the \tt n^{th} term. (i.e. \tt a_n

{\blue{\mathcal{Answer:- 20}}}

Need explanation.

Answers

Answered by Charmcaster
5

Step-by-step explanation:

d=3

(n/2)(2a+3(n-1))=77 ------(1)

Sum of (n-5) terms of the same AP = 7

therefore the sum of last 5 terms is 77-7=70

the last 5 terms are also in AP with starting number a' and common difference 3

therefore, (5/2)(2a' + 4*3)=70

solving this, a' = 8

(n-5/2)(2a+3(n-6)) = 7

(n-5/2)(2a+3(n-1))= 7 +(n-5)*15/2 ------(2)

dividing eq 1 and 2,

n/(n-5) = 77/{7+(n-5)*15/2}

here you can cross multiply and solve the quadratic in n to find the value of n(= 7)

now use this value of n in eq 1 and find a = 2

now nth term is 2 + 3*(7-1) = 20

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
77

\huge\sf\pink{Answer}

☞ Your Answer is 20

━━━━━━━━━━━━━

\huge\sf\blue{Given}

\sf S_n = 77

\sf S_{n-5} = 7

✭ Common Difference (d) = 3

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The nth term?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

We know that,

\underline{\boxed{\sf S_n = \dfrac{n}{2}\bigg\lgroup 2a+(n-1)d\bigg\rgroup}}

\underline{\sf As \ Per \ the \ Question}

\sf S_n = \dfrac{n}{2}\bigg\lgroup 2a+(n-1)d\bigg\rgroup = 77

\sf \dfrac{n}{2}\bigg\lgroup 2a+(n-1)3\bigg\rgroup = 77

\sf \bigg\lgroup 2a+3n-3\bigg\rgroup = \dfrac{77\times 2}{n}

\sf \bigg\lgroup 2a+3n-3\bigg\rgroup = \dfrac{154}{n}

\sf 2a = \dfrac{154}{n} - 3n+3

\sf 2a = \dfrac{154-3n^2+3n}{n}

\sf a = \dfrac{154-3n^2+3n}{2n} \:\:\: -eq(1)

Also given that,

\sf S_{n-5} = \dfrac{n-5}{2} \bigg\lgroup 2a+(n-5-1)3\bigg\rgroup = 7

\sf \dfrac{n-5}{2} \bigg\lgroup 2a+(n-5-1)3\bigg\rgroup = 7

\sf \dfrac{n-5}{2}\bigg\lgroup 2a+3n-18\bigg\rgroup = 7

\sf 2a+3n-18 = \dfrac{7\times 2}{n-5}

\sf 2a = \dfrac{14}{n-5}-3n+18

\sf 2a = \dfrac{14-3n^2+15n+18n-90}{n-5}

\sf a = \dfrac{-76-3n^2+33n}{2(n-5)}\:\:\: -eq(2)

Comparing eq(1) & eq(2)

\sf \dfrac{154-3n^2+3n}{\cancel{2}n} = \dfrac{-76-3n^2+33n}{\cancel{2}(n-5)}

\sf (154-3n^2+3n)(n-5) = (-76+3n^2+33n)(n)

\sf 154n-\cancel{3n^3}+3n^2-770+15n^2-15n = -76n+\cancel{3n^3}+33n^2

\sf 139n+18n^2-770+76n-33n^2 = 0

\sf 215n-15n^2-770 = 0

\sf -3n^2-43n-154 = 0

Splitting the middle term

\sf -3n^2-21n-22n-154 = 0

\sf -3n(n+7)-22(n+7)

\sf (-3n-22)(n+7)

\sf n = \dfrac{22}{3} \ or \ -7

Ignoring Negativity and fraction

\sf \green{ n = 7}

Substituting the value of a in eq(1)

\sf a = \dfrac{154-3n^2+3n}{2n}

\sf a = \dfrac{154-3(7)^2+3(7)}{2(7)}

\sf a = \dfrac{24}{14}

\sf  \red{a = 2}

We also know that,

\underline{\boxed{\sf a_n = a+(n-1)d}}

»» \sf a_7 = 2+(7-1)3

»» \sf a_7 = 2+(6)(3)

»» \sf a_7 = 2+18

»» \sf \orange{a_7 = 20}

━━━━━━━━━━━━━━━━━━

Similar questions