Math, asked by IMrGauravI, 9 months ago

\small\tt{Find\:the\:20^{th}term\:of\:an}\\{\small\tt{ap\:13\:,\:8,\:3\  \textless \ br /\  \textgreater \ }}

Answers

Answered by BlackWizard
1

Answer:

Explanation: a=13 , d= 8-13 = -5

An= a+(n-1)d

= 13+(n-1)(-5)

= 13+(-5n+5)

= 13-5n+5

= -5n+18

Answered by MrChauhan96
18

\small\bf\purple{\underline{\boxed{Question}}}

\:

\small\tt{Find\:the\:20^{th}term\:of\:an}\\{\small\tt{ap\:13\:,\:8,\:3</p><p>}}

\:

\small\bf\purple{\underline{\boxed{Solution}}:-}

\:

\small\tt{a\:=\:13}

\:

\small\tt{d\:=\:d_{2}-{d_{1}}\:=\:8\:-\:3\:=\:-\:5}

\:

\small\tt{a_{n}}\:=\:20

\:

\small\bf\purple{\underline{\boxed{Formula}}}

\:

\small\tt{\underline{\boxed{a_{n}\:=\:a\:+\:(n-1)\:d}}}

\:

\small\tt{so\:,}

\:

\small\tt{a_{20}}\:=\:13\:+\:(20-1)\:(-5)

\:

\small\tt{a_{20}}\:=\:13\:+\:(19)\:(-5)

\:

\small\tt{a_{20}}\:=\:13\:+\:(19)\:(-5)

\:

\small\tt{a_{20}}\:=\:13\:+\:(-95)

\:

\small\tt{a_{20}}\:=\:13\:-\:95

\:

\small\tt\blue{\underline{\boxed{a_{20}\:=\:-82}}}

\:

\small\tt{so\:the\:20^{th}\:term\:of\:an\:ap\:is\:-82}

\:

\small\bf\purple{\underline{\boxed{Thanks}}}

Similar questions