Math, asked by TheBrainliestUser, 1 month ago


 \small{ \tt {If \:   \: \:  y \:  = \sqrt{\dfrac{ \sec x - 1 }{\sec x  +  1}}} }
  \small{\tt {Prove  \:   \: \: that \:  \: \:  \dfrac{ dy}{dx} =  \cosec x( \cosec x - \cot x)}}

Answers

Answered by Anonymous
31

Given,

\longrightarrow \sf y = \sqrt{\dfrac{\sec x -1 }{\sec x + 1}}

As we know that,

  • sec x = 1/cos x

\longrightarrow \sf y = \sqrt{\dfrac{\frac{1}{\cos x } -1 }{\frac{1}{\cos x } + 1}}

\longrightarrow \sf y = \sqrt{\dfrac{\dfrac{1-\cos x}{\cos x}}{\dfrac{1+\cos x }{\cos x } }}

\longrightarrow \sf y = \sqrt{\dfrac{1-\cos x}{1+\cos x }}

\longrightarrow \sf y = \sqrt{\dfrac{1-\cos x}{1+\cos x }\times \dfrac{1-\cos x }{1 - \cos x }}

\longrightarrow \sf y = \sqrt{\dfrac{(1-\cos x)^2}{(1-\cos ^2x) }}

Apply formula, 1 - cos²x = sin² x

\longrightarrow \sf y = \sqrt{\dfrac{(1-\cos x)^2}{sin^2x}}

\longrightarrow \sf y = \dfrac{(1-\cos x)}{sinx}

\longrightarrow \sf y = \dfrac{1}{\sin x}-\dfrac{\cos x }{\sin x}

\longrightarrow \sf y = cosec \:x -cot \: x

Now,

\sf\leadsto \dfrac{dy}{dx} = \dfrac{d}{dx}(cosec \:x - cot\: x)

\sf\leadsto \dfrac{dy}{dx} = \dfrac{d}{dx}(cosec \:x) - \dfrac{d}{dx}(cot\: x)

We know that, derivative of cosec x is - cot x.cosec x and derivative of cot x is - cosec²x.

\sf\leadsto \dfrac{dy}{dx} =- \cot x. cosec\: x - (-cosec^2x)

\sf\leadsto \dfrac{dy}{dx} =- \cot x. cosec\: x +cosec^2x

\sf\leadsto \dfrac{dy}{dx} = cosec \:x(cosec \:x - \cot x)

Hence we have proved.

Formula used :-

  • ( cosec x )' = - cot x . cosec x
  • ( cot x )' = - cosec²x

Here [ ' represents the derivative ]

Answered by Anonymous
11

my phone is not good that's why photo is little blur.

If it help mark me brain list

Attachments:
Similar questions