Math, asked by Anonymous, 8 months ago


solve \:  \frac{1}{(a + b + c)}  =  \frac{1}{a}  +  \frac{1}{b }  +  \frac{1}{x}  \\  \\
I wanna know that how I can do that by method attached in notebook.

Attachments:

Answers

Answered by ıtʑFᴇᴇʟɓᴇãᴛ
8

\mathtt{\huge{\underline{\underline{\red{Question\:?}}}}}

 \dfrac{1}{a + b + x}  =  \dfrac{1}{a} +  \dfrac{1}{b}   +  \dfrac{1}{x}

\mathtt{\huge{\underline{\underline{\green{Answer:-}}}}}

-b & -a

\mathtt{\huge{\underline{\underline{\orange{Solution:-}}}}}

 \dfrac{1}{a + b + x}  =  \dfrac{1}{a} +  \dfrac{1}{b}   +  \dfrac{1}{x}

 \dfrac{1}{a + b + x}   - \dfrac{1}{x}  =  \dfrac{1}{a} +  \dfrac{1}{b}

 \dfrac{x - a + b + x}{x(a +  b+ x)} =  \dfrac{a + b}{ab}

 \dfrac{- 1( a +b )}{x(a + b + \: x )}  =  \dfrac{a + b}{ab}

  \dfrac{ - 1(a + b)}{( a+b )}  =  \dfrac{x(a + b + x)}{ab}

 - 1  =  \dfrac{x(a + b + x)}{ab}

 - ab = (a + b)x + {x}^{2}

 {x}^{2}  + (a + b)x + ab = 0

(Hence, a = 1 , b = (a+b) , c = ab)

Using, D = B² + 4 AC

➨ (a+b)² - 4 × 1 × ab

(a+b)² - 4ab

(a-b)²

  \dfrac{ - b +  \sqrt{d} }{2a} \: & \dfrac{ - b -  \sqrt{d} }{2a}

  \dfrac{ - a - b + a - b}{2 \times 1}  \: &  \dfrac{ - a - b  -  a  +  b}{2 \times 1}

 \dfrac{ - 2b}{2} & \dfrac{ - 2a}{2}

So, it will be, -b & -a .

_________________________________

Latex error part refers to the attachment

Attachments:
Similar questions