Math, asked by Anonymous, 9 months ago


solve \: it...

 \frac{5 \:  { \cos }^{2 \:}  \: 60 \:  +  \: 4 \: \:   { \sec }^{2} \: \:  30 \:  -  \:  { \tan }^{2}   \: 45}{ { \sin }^{2}  \: 30 \:  +  \:  { \cos }^{2}  \: 30 }
dont \: spam

Answers

Answered by InfiniteSoul
39

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{Question}}}}}}}

solve \: it...

 \dfrac{5 \: { \cos }^{2 \:} \: 60 \: + \: 4 \: \: { \sec }^{2} \: \: 30 \: - \: { \tan }^{2} \: 45}{ { \sin }^{2} \: 30 \: + \: { \cos }^{2} \: 30 }

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf\implies \dfrac{5 \: { \cos }^{2 \:} \: 60 \: + \: 4 \: \: { \sec }^{2} \: \: 30 \: - \: { \tan }^{2} \: 45}{ { \sin }^{2} \: 30 \: + \: { \cos }^{2} \: 30 }

\sf{\bold{\blue{\boxed{\boxed{sin^2\theta + cos^2 \theta = 1 }}}}}

\sf\implies\dfrac{ 5 cos^2 60 + 4 sec^2 30 - tan^2 45 }{1}

\sf{\bold{\blue{\boxed{\boxed{Cos 60 = \dfrac{1}{2}}}}}}

\sf{\bold{\blue{\boxed{\boxed{sec 30 = \dfrac{2}{\sqrt 3}}}}}}

\sf{\bold{\blue{\boxed{\boxed{tan 45 = 1}}}}}

  • putting triangular values

\sf\implies 5\times (\dfrac{1}{2})^2 + 4\times (\dfrac{2}{\sqrt 3})^2 - 1

\sf\implies 5 \times(\dfrac{1}{4}) + 4\times (\dfrac{4}{3}) - 1

\sf\implies \dfrac{5}{4} + \dfrac{16}{3} - 1

\sf\implies\dfrac{15 + 64  -12 }{12}

\sf\implies \dfrac{67}{12}

\sf{\bold{\green{\boxed{\boxed{\dfrac{67}{12}}}}}}

________________❤

THANK YOU❤


BrainIyMSDhoni: Great :)
Anonymous: Thanks a lot for your awesome answer ... ☺️☺️☺️ keep it up ...
Answered by Nereida
33

Answer :

Given -

\sf{\dfrac{5\:{cos}^{2}60+ 4\:{sec}^{2}30 - {tan}^{2}45}{{sin}^{2}30+{cos}^{2}30}}

To Find -

  • Value ?

Solution -

To solve such questions, we need to learn the values of trigonometric ratios of 0°, 30°, 45°, 60° and 90°.

Also, one Identity will be used : sin²∅ + cos²∅ = 1.

Here, we need the following values :

  • cos 60 = ½
  • sec 30 = 2/√3
  • tan 45 = 1

Now, solving the question :

Substituting the values -

\sf{=\dfrac{5\:\times{(1/2)}^{2}+ 4\:\times{(2/\sqrt{3})}^{2} -{1}^{2}}{1}}

\sf{= 5\:\times 1/4+ 4\:\times 4/3 - 1}

\sf{=\dfrac{5}{4}+ \dfrac{16}{3} - 1}

Taking LCM -

\sf{=\dfrac{15+64-12}{12}}

\sf{=\dfrac{79-12}{12}}

\sf{=\dfrac{67}{12}}

Hence, the value = 67/12.


BrainIyMSDhoni: Great :)
Nereida: Thanks
Anonymous: Senorita The Best User .... Thank you ... ☺️☺️☺️
Nereida: Welcome
Similar questions