Math, asked by utkarshyadav2292004, 2 months ago


solve \: the \: euation \:  \frac{1}{x}   -  \frac{1}{x - 2}  = 3 \:

Answers

Answered by anindyaadhikari13
1

Solution:

Given –

 \tt \longrightarrow \dfrac{1}{x} -  \dfrac{1}{x - 2}  = 3

LCM of x and (x - 2) is x(x - 2),

 \tt \longrightarrow \dfrac{x - 2 - x}{x(x - 2)}  = 3

 \tt \longrightarrow \dfrac{- 2}{ {x}^{2} - 2x}  = 3

Moving x² - 2x to the right side, we get,

 \tt \longrightarrow  - 2 = 3( {x}^{2}  - 2x)

 \tt \longrightarrow  3{x}^{2}  - 6x + 2 = 0

Now,

→ a = 3

→ b = -6

→ c = 2

Therefore,

 \tt \longrightarrow x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \tt \longrightarrow x =  \dfrac{ -( -6 ) \pm \sqrt{ { (- 6)}^{2} - 4 \times 3 \times 2} }{2 \times 3}

 \tt \longrightarrow x =  \dfrac{6\pm \sqrt{36- 24} }{6}

 \tt \longrightarrow x =  \dfrac{6\pm \sqrt{12} }{6}

 \tt \longrightarrow x =  \dfrac{6\pm2 \sqrt{3} }{6}

 \tt \longrightarrow x =  \dfrac{2(3\pm\sqrt{3}) }{6}

 \tt \longrightarrow x =  \dfrac{(3\pm\sqrt{3}) }{3}

Therefore,

 \tt \longrightarrow x_{1} =  \dfrac{3 + \sqrt{3}}{3}

 \tt \longrightarrow x_{2} =  \dfrac{3 - \sqrt{3}}{3}

So, the roots of the given equation are - (3 + √3)/3 and (3 - √3)/3

Answer:

  • x = (3 + √3)/3 and (3 - √3)/3
Similar questions