Math, asked by dakista3589, 1 year ago

[tex] Solve the Matrix equation \left[\begin{array}{ccc}x²\\y²\end{array}\right] -4 \left[\begin{array}{ccc}2x\\y\end{array}\right] =\left[\begin{array}{ccc}-7\\12\end{array}\right] [\tex]

Answers

Answered by ranikumari4878
0

Answer:

x=1 or x=7

y=-2 or y=6

Step-by-step explanation:

\left[\begin{array}{ccc}x²\\y²\end{array}\right] -4 \left[\begin{array}{ccc}2x\\y\end{array}\right] =\left[\begin{array}{ccc}-7\\12\end{array}\right] [\tex]

\left[\begin{array}{ccc}x²\\y²\end{array}\right] -4 \left[\begin{array}{ccc}2x\\y\end{array}\right] =\left[\begin{array}{ccc}-7\\12\end{array}\right] [\tex]\\hence, the equations are'\\x^{2} -8\times x+7=0\\x^{2}-7x-x+7 =0\\(x-7)(x-1)=0\\x=1 or x=7\\and second eqation is\\y^{2} -4y-12=0\\y^{2}-4y-12=0\\y^{2}-6y+2y-12=0 \\ (y+2)(y-6)=0\\y=-2 or y=6

Answered by sushiladevi4418
1

Answer:

x=7  or x=1

y=6  or y=-2

Step-by-step explanation:

\left[\begin{array}{ccc}x^{2}\\y^{2}\end{array}\right] -4 \left[\begin{array}{ccc}2x\\y\end{array}\right] =\left[\begin{array}{ccc}-7\\12\end{array}\right]

\left[\begin{array}{ccc}x^{2}\\y^{2}\end{array}\right]- \left[\begin{array}{ccc}8x\\4y\end{array}\right] =\left[\begin{array}{ccc}-7\\12\end{array}\right]

\left[\begin{array}{ccc}x^{2}-8x\\y^{2}-4y\end{array}\right]=\left[\begin{array}{ccc}-7\\12\end{array}\right]

By comparing the matrices on both side we get:

   x^{2}-8x =-7        and        y^{2}-4y = 12

now sole the above quadratic equation

x^{2}-8x =-7

x^{2}-8x+7=0                  

\left ( x-7 \right )\left ( x-1 \right )=0    

\left ( x-7 \right )=0  or   \left ( x-1 \right )=0  

x=7    or    x=1

                       

y^{2}-4y = 12

y^{2}-4y-12=0                  

\left ( y-6 \right )\left ( y+2 \right )=0    

\left ( y-6 \right )=0  or   \left ( y+2 \right )=0  

y=6    or    y=-2

Similar questions