Math, asked by BrainlyElon, 1 month ago

\spadesuit\ \; \; \; \bf \orange{Maths}\ \; :
Real numbers x , y satisfy
\rm \green{2^x = 3^y = 216\ .\ Find\ \dfrac{1}{x}+\dfrac{1}{y}\ .}
\bf . \qquad Best\ of\ Luck\ ! \qquad .

Answers

Answered by BrainlyIAS
236

★ ════════════════════ ★

\sf 2^x=216\ \qquad 3^y=216

Applying logarithm on both sides ,

\\ \longrightarrow \sf \log (2^x) = \log (216)\ \quad \log (3^y)= \log (216) \\

\longrightarrow \sf \log (2^x) = \log (6^3)\ \quad \log (3^y)= \log (6^3)

\boxed{ \bullet\ \; \sf \red{\log a^b = b\ \log a}}

\longrightarrow \sf x \log 2 = 3 \log 6\ \quad y \log 3= 3 \log 6

\longrightarrow \sf x  = \dfrac{3 \log 6}{ \log 2}\ \quad y = \dfrac{3 \log 6}{ \log 3}

\longrightarrow \sf \purple{\dfrac{1}{x}  = \dfrac{ \log 2}{ 3 \log 6}\ \; ; \quad \dfrac{1}{y} = \dfrac{ \log 3}{ 3 \log 6}}

Our required value ,

:\implies \sf \dfrac{1}{x}+\dfrac{1}{y}

:\implies \sf \dfrac{ \log 2}{3 \log 6}+\dfrac{\log 3}{3 \log 6}

:\implies \sf \dfrac{ \log 2 + \log 3}{3 \log 6}

\boxed{ \bullet\ \; \sf \red{\log a + \log b = \log ab}}

:\implies \sf \dfrac{ \log (2.3)}{3 \log 6}

:\implies \sf \dfrac{ \log 6}{3 \log 6}

:\implies \sf \dfrac{ 1 }{ 3 }\ \; \bigstar

\boxed{\bullet \; \; \sf  \pink{ \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{x}}} + \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{y}}} = \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{3}}} }}

★ ════════════════════ ★

Shortcut :

\sf 2^x = 3^y = 216

\sf \to 2 = (216)^{\frac{1}{x}}\ \; \; \& \; \; \; 3 = (216)^{\frac{1}{y}}

Multiply both the equations ,

\to \sf 6 = (216)^{\frac{1}{x}+\frac{1}{y}}

\to \sf 6 = (6)^{3 \left( \frac{1}{x}+\frac{1}{y} \right) }

\sf \to 1 = 3 \left( \dfrac{1}{x} + \dfrac{1}{y} \right)

\sf \longrightarrow  \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{3}


amansharma264: Excellent
BrainlyIAS: Thank you :)
Answered by Anonymous
170

Given :-

 \tt {2}^{x} = {3}^{y} = 216 \: \: \: ( x , y ) \in \mathbb R

To Find :-

The value of  \tt \dfrac{1}{x} + \dfrac{1}{y}

Solution :-

By Given we have ;

 \tt  {2}^{x} = 216 \quad and \quad {3}^{y} = 216

Now , Consider ;

 \quad \qquad { \tt { {2}^{x} = 216 } }

Apply Prime Factorisation on RHS we have ;

 \quad \qquad { : \longmapsto \tt { {2}^{x} = 2 × 2 × 2 × 3 × 3 × 3} }

It can be written further as ;

 \quad \qquad { : \longmapsto \tt { 2^{x} = 6 × 6 × 6 }}

 \quad \qquad { : \longmapsto \tt { 2^{x} = 6³ }}

Now Take log on both sides ;

 \quad \qquad { : \longmapsto \tt { log ( 2^{x} ) = log ( 6³ ) }}

We knows a Logarithmic identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { log ( m^{n} ) = n log ( m ) }}}}}}{\bigstar}

Using this we have ;

 \quad \qquad { : \longmapsto \tt { x . log ( 2 ) = 3 . log ( 6 ) }}

Can be written as ;

 \quad \qquad { : \longmapsto \tt { x = \dfrac{3 . log( 6 )}{log ( 2 )} }}

Again Can be written as ;

 \quad \qquad { : \longmapsto \tt { \dfrac{x}{1} = \dfrac{3 . log( 6 )}{log ( 2 )} }}

Reciprocal both sides we have ;

 \quad \qquad { : \longmapsto \tt {\green { \dfrac{1}{x} = \dfrac{log ( 2 )}{ 3 . log ( 6 )} \quad ----( i ) }}}

Now , Consider ;

 \quad \qquad { \tt { {3}^{y} = 216 } }

Again applying prime Factorisation as above we have ;

 \quad \qquad { : \longmapsto \tt { 3^{y} = 6³ }}

Taking log on both sides we have ;

 \quad \qquad { : \longmapsto \tt { log ( 3^{y} ) = log ( 6³ ) }}

Using the above identity as used above we have ;

 \quad \qquad { : \longmapsto \tt { y . log ( 3 ) = 3 . log ( 6 ) } }

 \quad \qquad { : \longmapsto \tt { y = \dfrac{3 . log ( 6 )}{log ( 3 ) } }}

Can be written as ;

 \quad \qquad { : \longmapsto \tt { \dfrac{y}{1} = \dfrac{3 . log ( 6 )}{log ( 3 ) } }}

Reciprocal both sides we have ;

 \quad \qquad { : \longmapsto \tt { \green { \dfrac{1}{y} = \dfrac{ log ( 3 )}{ 3 . log ( 6 ) } \quad ----( ii ) }}}

Adding ( i ) & ( ii ) we have ;

 \quad \qquad { : \longmapsto \tt { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{ log ( 2 )}{ 3 . log ( 6 )} + \dfrac{ log ( 3 ) }{3 . log ( 6 )} }}

As the Denominators are same of both fractions we can simply add their numerators with same base ;

 \quad \qquad { : \longmapsto \tt { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{ log ( 2 ) + log ( 3 )}{ 3 . log ( 6 )} }}

We knows another Logarithmic identity i.e ;

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { log ( a ) + log ( b )  = log ( a.b) }}}}}}{\bigstar}

Using this we have ;

 \quad \qquad { : \longmapsto \tt { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{ log ( 2 . 3)}{ 3 . log ( 6 )} }}

 \quad \qquad { : \longmapsto \tt { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{ log ( 6 )}{ 3 . log ( 6 )} }}

After Cancelling log ( 6 ) from both Numerator & Denominator we have ;

 \quad \qquad { : \longmapsto \tt { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{3} }}

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red { \therefore { \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{3} }}}}}}}{\bigstar}

Additional Information :-

  •  { \boxed { \tt { log ( a ) - log ( b ) = log \bigg ( \dfrac{a}{b} \bigg ) }}}

  •  { \boxed { \tt log_{a} a = 1 }}

  •  { \boxed { \tt log_{x} y = \dfrac{log_{e} y}{log_{e} x } }}

  •  {\boxed { \tt Natural \:\: log \:\: of \:\: x = ln ( x ) = log_{e} x }}

  •  { \boxed { \tt { e = Euler's \:\: number }}}

  •  { \boxed { \tt { e = \displaystyle \tt  \lim_{ \tt n \to \infty } { \bigg ( \tt 1 + \dfrac{1}{n} \bigg )}^{n} }}}

Maclaurin Series :-

  • Binomial Expansion For all x² < 1

 { \boxed { \tt { \orange { {( 1 \pm x)}^{n} = 1 \pm \dfrac{nx}{1!} + \dfrac{n(n - 1)x²}{2!} + . . . . . . . }}}}

 { \boxed { \tt { \red { {( 1 \pm x)}^{- n} = 1 \mp \dfrac{nx}{1!} + \dfrac{n(n + 1)x²}{2!} +  . . . . . . . .  }}}}

  • Maclaurin Series of Sin x :-

 { \boxed { \tt { \orange { Sin x = x - \dfrac{x³}{3!} + \dfrac{x⁵}{5!} - . . . . . . . . . . }}}}

  • Maclaurin Series of Cos x :-

 { \boxed { \tt { \green { Cos x = 1 - \dfrac{x²}{2!} + \dfrac{x⁴}{4!} - . . . . . . . . . . }}}}

  • Maclaurin Series of tan x :-

 { \boxed { \tt { \blue { tan x = x + \dfrac{x³}{3} + \dfrac{2x⁵}{15} + . . . . . . . . . . }}}}

  • Maclaurin Series of  \tt e^{x} :-

 { \boxed { \tt { \green { e^{x} = 1 + x + \dfrac{x²}{2!} + \dfrac{x³}{3!} + . . . . . . . . }}}}

  • Maclaurin Series of  \tt {tan}^{ - 1 } x If & only  \tt { |x| \leqslant 1 } :-

 { \boxed { \tt { \orange { {tan}^{-1} x = x - \dfrac{x³}{3} + \dfrac{x⁵}{5} - . . . . . . . . . . }}}}

Similar questions