Math, asked by gurjarkusum41, 1 month ago


 \sqrt{1 +  \frac{x}{289} } \:  = 1 \times \frac{1}{17 }  \: them \: x \:  =

Answers

Answered by Sauron
184

Answer:

Value of x is –288.

Step-by-step explanation:

\sf{\longrightarrow{\sqrt{1 + \dfrac{x}{289} } \: = 1 \times \dfrac{1}{17}}}

\sf{\longrightarrow{\sqrt{1 + \dfrac{x}{289} } \: =  \dfrac{1}{17}}}  -  - (squaring \: both \: sides)

\sf{\longrightarrow{\left(\sqrt{1 + \dfrac{x}{289} }\right)^{2}  \: =  {\left( \: \dfrac{1}{17}\right)}}}^{2}

\sf{\longrightarrow{1 + \dfrac{x}{289}} \: =  \dfrac{1}{289}}

\sf{\longrightarrow{\dfrac{x}{289}} \: =  \dfrac{1}{289} - 1}

\sf{\longrightarrow{\dfrac{x}{289}} \: =  \dfrac{1 - 289}{289}}

\sf{\longrightarrow{\dfrac{x}{289}} \: =  \dfrac{ - 288}{289}}

\sf{\longrightarrow{ 289x =  - 288 \times 289}}

\sf{\longrightarrow{289x =  - 83232}}

\sf{\longrightarrow{x =  \dfrac{- 83232}{289}}}

\sf{\longrightarrow{x =  - 288}}

Value of x = –288.

___________________

Verification:

Put the value of x in LHS,

\sf{\longrightarrow{\sqrt{1 + \dfrac{ - 288}{289}}}}

\sf{\longrightarrow{\sqrt{\dfrac{289 + ( - 288)}{289}}}}

\sf{\longrightarrow{\sqrt{\dfrac{1}{289}}}}

\sf{\longrightarrow{\dfrac{1}{17}}}

LHS = RHS

Hence verified!

Answered by Itzheartcracer
207

Given :-

\bf\sqrt{1+\dfrac{x}{289}} = 1\times\dfrac{1}{17}

To Find :-

Value of x

Solution :-

\sf \sqrt{1+\dfrac{x}{289}} = \dfrac{1\times1}{17}

\sf \sqrt{1+\dfrac{x}{289}} = \dfrac{1}{17}

Squaring both sides will give

\sf\bigg(\sqrt{1+\dfrac{x}{289}}\bigg)^2=\bigg(\dfrac{1}{17}\bigg)^2

\sf \bigg(1+\dfrac{x}{289}\bigg)=\dfrac{1}{289}

\sf \dfrac{289+x}{289}=\dfrac{1}{289}

As bases are equal. So, we may cancel them

\sf 289+x=1

\sf x=1-289

\sf x=-288

Henceforth

Value of x is -288

Similar questions