Math, asked by babugujjer384, 9 months ago


 \sqrt{1 +  \sin(a) }  \div 1 -  \cos(a)

Answers

Answered by swastikthakur0
0

Step-by-step explanation:

Prove:

cos

(

A

)

1

sin

(

A

)

=

1

+

sin

(

A

)

cos

(

A

)

Multiply the left side by 1 in the form of

cos

(

A

)

cos

(

A

)

:

cos

2

(

A

)

cos

(

A

)

(

1

sin

(

A

)

)

=

1

+

sin

(

A

)

cos

(

A

)

Substitute

cos

2

(

A

)

=

1

sin

2

(

A

)

1

sin

2

(

A

)

cos

(

A

)

(

1

sin

(

A

)

)

=

1

+

sin

(

A

)

cos

(

A

)

Factor the numerator:

(

1

sin

(

A

)

)

(

1

+

sin

(

A

)

)

cos

(

A

)

(

1

sin

(

A

)

)

=

1

+

sin

(

A

)

cos

(

A

)

Cancel the common factor:

(

1

sin

(

A

)

)

(

1

+

sin

(

A

)

)

cos

(

A

)

(

1

sin

(

A

)

)

=

1

+

sin

(

A

)

cos

(

A

)

Write without the cancelled factors:

1

+

sin

(

A

)

cos

(

A

)

=

1

+

sin

(

A

)

cos

(

A

)

Q.E.D.

Similar questions