Math, asked by meharkotwani, 2 months ago

 \sqrt{ 1 + \sin( \alpha ) \div 1 - \sin( \alpha )} = \sec( \alpha ) + \tan( \alpha )
​Please prove this sum

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sqrt{ \frac{1   +   \sin( \alpha ) }{1  -  \sin( \alpha ) } }  \\

 =  \sqrt{ \frac{(1   +   \sin( \alpha ) )(1  +  \sin( \alpha ) )}{(1  -  \sin( \alpha ))(1 +  \sin(  \alpha )  )} }  \\

 =  \sqrt{ \frac{(1   +   \sin( \alpha ) )^{2}}{(1  -  \sin ^{2} ( \alpha ))} }  \\

 =  \sqrt{ \frac{(1   +   \sin( \alpha ) )^{2}}{  \cos ^{2} ( \alpha )} }  \\

 =  \frac{(1   +   \sin( \alpha )) }{  \cos  ( \alpha )}   \\

 =  \frac{1   }{  \cos  ( \alpha )}  +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }   \\

 =  \sec ( \alpha ) +  \tan( \alpha )   \\

Similar questions