Math, asked by vaibhav7231, 1 year ago


 \sqrt{10 +  \sqrt{25 +  \sqrt{108 +  \sqrt{154 +  \sqrt{225} } } } }

Answers

Answered by BrainlyPromoter
4

Answer:

4

Step-by-step explanation:

\sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{154 + \sqrt{225} } } } } \\ \\  =\sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{154 + 15 } } } } \\ \\  = \sqrt{10 + \sqrt{25 + \sqrt{108 + \sqrt{169} } } } \\ \\  = \sqrt{10 + \sqrt{25 + \sqrt{108 + 13 } } } \\ \\  = \sqrt{10 + \sqrt{25 + \sqrt{121 } } } \\ \\  = \sqrt{10 + \sqrt{25 + 11 } } \\ \\  = \sqrt{10 + \sqrt{36 } } \\ \\  = \sqrt{10 + 6 } \\ \\ = \sqrt{16 } \\  = \sqrt{2 \times 2 \times 2 \times 2 } \\  = 2 \times 2 \\  = 4

Hence, we can conclude that the final answer or the final result is 4.

Answered by AbhijithPrakash
7

Answer:

\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}=4

Step-by-step explanation:

\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}

\sqrt{225}

\mathrm{Factor\:the\:number:\:}\:225=15^2

=\sqrt{15^2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{15^2}=15

=\sqrt{154+15}

\mathrm{Add\:the\:numbers:}\:154+15=169

=\sqrt{169}

\mathrm{Factor\:the\:number:\:}\:169=13^2

=\sqrt{13^2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{13^2}=13

=\sqrt{108+13}

\mathrm{Add\:the\:numbers:}\:25+11=36

=\sqrt{36}

\mathrm{Factor\:the\:number:\:}\:36=6^2

=\sqrt{6^2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{6^2}=6

=\sqrt{10+6}

\mathrm{Add\:the\:numbers:}\:10+6=16

=\sqrt{16}

\mathrm{Factor\:the\:number:\:}\:16=4^2

=\sqrt{4^2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{4^2}=4

=4

Similar questions