Math, asked by Prince0023, 1 year ago


 \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }
Simplify

Please solve this. I will mark as Brainliest immediately

Answers

Answered by Anonymous
5

Solution :

Let x =  \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }

Then,  \mathsf{{x} ^{2}} = 11  \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }

 \mathsf{{x} ^{2}} = 11x

Hence, x = 11.


Prince0023: wrong
Anonymous: How?
Answered by pratyush4211
10

 \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }

As we know

 \sqrt[x]{a}   = a {}^{ \frac{1}{x} } \\  \\ a {}^{x}  \times a {}^{y} =  {a}^{x + y}

Taking Last two Terms from Series

 \sqrt{11 \sqrt{11} }  \\  \\  \sqrt{11 {}^{1}  \times 11 {}^{ \frac{1}{2} } }  \\  \\  \sqrt{11 {}^{1 +  \frac{1}{2} } }  \\  \\  \sqrt{11 {}^{ \frac{3}{2} } }  \\  \\ 11 {}^{ \frac{3}{2}  \times  \frac{1}{2} }  \\  \\  {11}^{ \frac{3}{4} }  \\  \\  \sqrt{11 \sqrt{11} }  =  {11}^{ \frac{3}{4} }

Taking Last 3 terms

 \sqrt{11 \sqrt{11 \sqrt{11} } }  \\  \\  \sqrt{11  {}^{1} \times  {11}^{ \frac{3}{4} } }  \\  \\  \sqrt{11 {}^{1 + \frac{3}{4}  } }  \\  \\  \sqrt{ {11}^{ \frac{7}{4} } }  \\  \\  {11}^{ \frac{7}{4} \times  \frac{1}{2}  }  \\  \\  {11}^{ \frac{7}{8} }  \\  \\  \sqrt{11 \sqrt{11 \sqrt{11} } }  =  {11}^{ \frac{7}{8} }

Taking Last 4 terms

 \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }  \\  \\  \sqrt{11 {}^{1}  \times 11 {}^{ \frac{7}{8} } }  \\  \\  \sqrt{11 {}^{1 +  \frac{7}{8} } }  \\  \\  \sqrt{11 {}^{ \frac{15}{8} } }  \\  \\  {11}^{ \frac{15}{8}  \times  \frac{1}{2} }  \\  \\  {11}^{ \frac{15}{16} }

 \underline{ \huge{ \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11} } } }  =  {11}^{ \frac{15}{16} } }}


pratyush4211: check
Prince0023: absolutely right
pratyush4211: :)
Prince0023: can you answer my one more ques
pratyush4211: ask
Similar questions