Math, asked by kulbirsingh0108, 10 months ago


 \sqrt{11}  -  \sqrt{7}  \div  \sqrt{11}  +  \sqrt{7}  = a - b \sqrt{77}
then find the value of a and b



please answer this question by step by step explanation ​

Answers

Answered by Soumya0710
4

hope it will help you.....

Attachments:
Answered by MisterIncredible
12

Required to find :-

  • Values of 'a' and 'b'

Solution :-

Given :-

 \rm  \dfrac{ \sqrt{11}  -  \sqrt{7} }{ \sqrt{11}  +   \sqrt{7}  }  = a - b \sqrt{77}

Consider the LHS part ;

  \bf \dfrac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11}   +   \sqrt{7} }

Here,

We need to rationalise the denominator

Rationalising factor of 11 + 7 = 11 - 7

Multiply both numerator and denominator with rationalising factor

So,

  \bf{ \rm \dfrac{ \sqrt{11} -  \sqrt{7}  }{ \sqrt{11} +  \sqrt{7}  }   \times  \dfrac{ \sqrt{11}  -  \sqrt{7} }{ \sqrt{11} -  \sqrt{7}  } }

Here we need to use some algebraic identities

The Identities are ;

  • 1. ( x - y ) ( x - y ) = ( x - y )²

  • 2. ( x + y ) ( x - y ) = x² - y²

  • 3. ( x - y )² = x² + y² - 2xy

Now,

Using the 1st and 2nd identity

 \bf \rm  \dfrac{ \big( \sqrt{11}  -  \sqrt{7}  \:  \:  {\big )}^{2} }{( \sqrt{11} {)}^{2} - ( \sqrt{7} {)}^{2}    }

Expand the numerator using the 3rd identity

So,

 \bf \rm  \dfrac{( \sqrt{11}  {)}^{2}  + ( \sqrt{7} {)}^{2}   - 2( \sqrt{11})( \sqrt{7} ) }{11 - 7}

Solving further ;

 \bf \rm  \dfrac{11 + 7 - 2 \sqrt{77} }{4}

 \bf \rm  \dfrac{ 18 - 2 \sqrt{77} }{4}

 \bf \rm  \dfrac{2 \: (9 - 1 \sqrt{77} \:  \:  )}{4}

Cancelling 2 in numerator and 4 in denominator leaving 2

  \bf \rm \dfrac{9 - 1 \sqrt{77} }{2}

By splitting the above one into 2 parts

  \bf \rm \: \dfrac{9}{2}  -  \dfrac{1 \sqrt{77} }{2}

Now consider both LHS and RHS part

  \bf \rm \dfrac{9}{2}  -  \dfrac{1 -  \sqrt{77} }{2}  = a - b \sqrt{77}

From the above consideration we can conclude that the LHS is in the form of RHS

So, Equal the parts on both sides

Hence, We get ;

>> Value of 'a' = 9/2

>> Value of 'b' = 1/2

Similar questions