Math, asked by sam7772, 1 year ago


 \sqrt{12 + 6 \sqrt{3} }   +  \sqrt{12 - 6 \sqrt{3} }
simplify the expression given above.

Answers

Answered by A1111
2
Hope this helps.....
Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given : \sqrt{12+6\sqrt{3} } +\sqrt{12-6\sqrt{3} }

To find : The answer of given term

Formula used : We use algebraic identities,

  1. (a+b)^2=a^2+b^2+2ab
  2. (a-b)^2=a^2+b^2-2ab
  • Calculation for given term

We have,

\sqrt{12+6\sqrt{3} } +\sqrt{12-6\sqrt{3} }

for simplifying the terms we write,

\sqrt{A}+\sqrt{B}                   --(1)

Where A=12+6\sqrt3    and  B=12-6\sqrt3

taking A and B (which are inside the square roots) separately,

A=12+6\sqrt{3}

we can write A  as,

⇒  (3)^2+(\sqrt3)^2 + 2*3*\sqrt{3}

now we get the equation just similar to formula (1) where a=3 and b=\sqrt3 so the term is ,

A=(3+\sqrt3)^2

Now take B,

B=12-6\sqrt{3}

B can be written as,

⇒  (3)^2+(\sqrt3)^2 - 2*3*\sqrt{3}

it is just like the formula (2) where  a=3 and b=\sqrt3 so the term is,

B=(3-\sqrt3)^2

now we have the values of A and B and by putting these values in equation (1) we get,

⇒  \sqrt{A}+\sqrt{B}    

A=(3+\sqrt3)^2   and   B=(3-\sqrt3)^2

⇒  \sqrt{(3+6\sqrt3)^2}+\sqrt{(3-6\sqrt3)^2}

⇒  3+6\sqrt3+3-6\sqrt3

⇒  3+3

⇒  6

Hence we get the answer as 6.

Similar questions