Math, asked by anusehgal912, 2 months ago


 \sqrt{125 }  - 4 \sqrt{6}  +  \sqrt{294}  - 2 \sqrt{ \frac{1}{6} }
simplify​

Answers

Answered by StormEyes
5

Solution!!

\sf \sqrt{125}-4\sqrt{6}+\sqrt{294}-2\sqrt{\dfrac{1}{6}}

Simplify the radical expressions

\sf = \sqrt{5^{3}}-4\sqrt{6}+\sqrt{7^{2}\times 6}-2\sqrt{\dfrac{1}{6}}

\sf = \sqrt{5^{2+1}}-4\sqrt{6}+\sqrt{7^{2}}\sqrt{6}-2\sqrt{\dfrac{1}{6}}

\sf = \sqrt{5^{2}\times 5^{1}}-4\sqrt{6}+7\sqrt{6}-2\sqrt{\dfrac{1}{6}}

\sf = \sqrt{5^{2}}\sqrt{5}-4\sqrt{6}+7\sqrt{6}-2\sqrt{\dfrac{1}{6}}

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-2\sqrt{\dfrac{1}{6}}

To take the root of a fraction, take the root of numerator and denominator separately.

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-2\times \dfrac{1}{\sqrt{6}}

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-\dfrac{2}{\sqrt{6}}

Rationalise the denominator

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-\dfrac{2}{\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-\dfrac{2\sqrt{6}}{\sqrt{6}\times \sqrt{6}}

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-\dfrac{2\sqrt{6}}{6}

\sf = 5\sqrt{5}-4\sqrt{6}+7\sqrt{6}-\dfrac{\sqrt{6}}{3}

Find the sum and the difference.

\sf = 5\sqrt{5}+\dfrac{-12\sqrt{6}+21\sqrt{6}-\sqrt{6}}{3}

\sf = 5\sqrt{5}+\dfrac{-13\sqrt{6}+21\sqrt{6}}{3}

\boxed{\sf = 5\sqrt{5}+\dfrac{8\sqrt{6}}{3}}

Similar questions