Math, asked by imvivaanaggarwal, 3 days ago


 \sqrt{(15612 +  \sqrt{154 \sqrt{225) } } }
1. 135
2. 155
3. 105
4. 125

please help​

Answers

Answered by Ladylaurel
15

Correct Question

Solve:  \sf{\sqrt{15612 + \sqrt{154 + \sqrt{225}}}}.

1. 135ㅤㅤㅤㅤ ㅤㅤ2. 155

3. 105ㅤㅤㅤㅤㅤㅤ4. 125

Answer:

√15612 + √154 + √225 = 125

ㅤㅤㅤㅤㅤㅤ Option 4. is correct!

Step-by-step explanation

To Find :-

Solve

  •  \sf{\red{\sf{\sqrt{15612 + \sqrt{154 + \sqrt{225}}}}}}

 \\

Solution

\sf{\longrightarrow \: \sqrt{15612 + \sqrt{154 + \sqrt{225}}}}

Calculating the root of 225,

 \\

\sf{\longrightarrow \: \sqrt{15612 + \sqrt{154 + 15}}}

By adding, 154 and 15,

 \\

\sf{\longrightarrow \: \sqrt{15612 + \sqrt{169}}}

Calculating the root of 169,

 \\

\sf{\longrightarrow \: \sqrt{15612 + 13}}

On adding, 15612 and 13,

 \\

\sf{\longrightarrow \: \sqrt{15625}}

Finding the root of 15625,

\sf{\longrightarrow \: \boxed{ \sf{ \red{125}}}} \:  \:  \:  \:  \bigstar

 \\

Hence,

\sf{ \sqrt{15612 + \sqrt{154 + \sqrt{225}}} = 125}

Option number 4 is the correct.

Answered by tonystarkironman94
2

Answer:

125

Step-by-step explanation:

This is your answer

hope it helps you

Similar questions