Math, asked by trilokpatel803, 1 year ago


 \sqrt{16 + 6 \sqrt{7} }

Answers

Answered by ItzSmartyYashi
2

\huge{\underline{\underline{\mathfrak{Answer}}}}

111−

16+6+

7

111−

16+6+2.65

111−4.96

=106.04

Please mark as brilliant answer.

\huge{\underline{\underline{\mathfrak{Thank You}}}}

Answered by AbhijithPrakash
11

Answer:

\sqrt{16+6\sqrt{7}}=\sqrt{7}+3\quad \left(\mathrm{Decimal:\quad }\:5.64575\dots \right)

Step-by-step explanation:

\sqrt{16+6\sqrt{7}}

\black{\mathrm{Factor}\:16+6\sqrt{7}:}

16+6\sqrt{7}

\gray{\mathrm{Add/Subtract\:}\sqrt{7}^2=7}

=16+6\sqrt{7}+\sqrt{7}^2-7

\gray{\mathrm{Refine}}

=\sqrt{7}^2+6\sqrt{7}+9

\gray{\mathrm{Rewrite\:}\sqrt{7}^2+6\sqrt{7}+9\mathrm{\:as\:}\sqrt{7}^2+2\sqrt{7}\cdot \:3+3^2}

=\sqrt{7}^2+2\sqrt{7}\cdot \:3+3^2

\gray{\mathrm{Apply\:Perfect\:Square\:Formula}:\quad \left(a+b\right)^2=a^2+2ab+b^2}

\gray{a=\sqrt{7},\:b=3}

=\left(\sqrt{7}+3\right)^2

=\sqrt{\left(\sqrt{7}+3\right)^2}

\gray{\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0}

=\sqrt{7}+3

Similar questions