Math, asked by Alishasamanta, 3 months ago


 \sqrt{2}  +  \sqrt{3}  \div  \sqrt{2}  +  \sqrt{3}  +  \sqrt{5}
make the denominator rational

Answers

Answered by 12thpáìn
136

\underline{\underline{\blue{ \sf Question}}}

  • \sf\dfrac{ \sqrt{2} +  \sqrt{3}  }{ \sqrt{2} +  \sqrt{3}  +  \sqrt{5}  }

\underline{\underline{\orange{ \sf Answer=  \: 5 -   \sqrt{10}  -  \sqrt{15}}}}

\underline{\underline{\pink{ \sf Step \ by \ step \ explanation}}}

{\implies\sf\dfrac{ \sqrt{2} +  \sqrt{3}  }{ \sqrt{2} +  \sqrt{3}  +  \sqrt{5}  }}

Rationalize the Term denominator

{\implies\sf\dfrac{ \sqrt{2} +  \sqrt{3}  }{ \sqrt{2} +  \sqrt{3}  +  \sqrt{5}  }  \times  \dfrac{ ((\sqrt{2} +  \sqrt{3}  ) -  \sqrt{5} )}{ ((\sqrt{2} +  \sqrt{3}  ) - \sqrt{5}  )}}

{\implies \sf\dfrac{ \sqrt{2}( \sqrt{2} +  \sqrt{3} -   \sqrt{5} ) +  \sqrt{3} ( \sqrt{2}  +  \sqrt{3} -  \sqrt{5} )   }{ \sqrt{2}( \sqrt{2}  + \sqrt{3}   -  \sqrt{5}) +  \sqrt{3}( \sqrt{2} +  \sqrt{3}  -  \sqrt{5} ) +   \sqrt{5} ( \sqrt{2} +  \sqrt{3}  -  \sqrt{5} )    }   }

{\implies \sf\dfrac{2 +  \sqrt{6} -  \sqrt{10} +  \sqrt{6} + 3 -  \sqrt{15}    }{2 +  \sqrt{6} -  \sqrt{10} +  \sqrt{6}  + 3 -  \sqrt{15}  +  \sqrt{10}  +  \sqrt{15}  - 5  }}

{\implies \sf\dfrac{5 +  2\sqrt{6} -   \sqrt{10}  -  \sqrt{15}    }{2 \sqrt{6}   -    \cancel{\sqrt{10}} +  \sqrt{6}  -   \cancel{\sqrt{15}}  +   \cancel{\sqrt{10}}  +  \cancel{ \sqrt{15} }   }}

{ \implies\sf\dfrac{5 + \cancel{  2\sqrt{6}} -   \sqrt{10}  -  \sqrt{15}    }{ \cancel{2 \sqrt{6} }   }  }

~~~~~~~ \blue{\sf \: 5 -   \sqrt{10}  -  \sqrt{15}}

Similar questions